1,601 research outputs found

    International Environmental Design Contest Task: Hyrdaulic Fracturing Fluid Hydrocarbon Removal As a Reverse Osmosis Pretreatment

    Get PDF
    Natural gas is useful in several different applications from chemical feed stock, to energy and fuel source. In the past it has been too expensive to be properly taken advantage of, but in recent years technology advancements have made it a rather cheap commodity. However, these advancements, hydraulic fracturing and horizontal drilling, come at an additional cost. They require massive amounts of water, approximately 7,000,000 gallons per well drilled. After use, this water is laden with salts and dangerous hydrocarbons. In order for the water to be recycled or reused, both components must be removed. Reverse osmosis membranes are commonly used to remove salts but, unfortunately, the hydrocarbons foul reverse osmosis membranes making them impossible to use without an effective pretreatment to remove the hydrocarbons. The solution outlined in this proposal removes hydrocarbons that could be present in several different forms in the fraccing return water, allowing reverse osmosis to be a valid option for removing salts. This technology would allow water to be recycled and its strategic implementation would significantly decrease the number of trucks required to transfer water within the natural gas industry

    Ecdysone triggered PGRP‐LC expression controls Drosophila innate immunity

    Get PDF
    Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP‐LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid‐regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP‐LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals

    The Dyad Symmetry Element of Epstein-Barr Virus Is a Dominant but Dispensable Replication Origin

    Get PDF
    OriP, the latent origin of Epstein-Barr virus (EBV), consists of two essential elements: the dyad symmetry (DS) and the family of repeats (FR). The function of these elements has been predominantly analyzed in plasmids transfected into transformed cells. Here, we examined the molecular functions of DS in its native genomic context and at an ectopic position in the mini-EBV episome. Mini-EBV plasmids contain 41% of the EBV genome including all information required for the proliferation of human B cells. Both FR and DS function independently of their genomic context. We show that DS is the most active origin of replication present in the mini-EBV genome regardless of its location, and it is characterized by the binding of the origin recognition complex (ORC) allowing subsequent replication initiation. Surprisingly, the integrity of oriP is not required for the formation of the pre-replicative complex (pre-RC) at or near DS. In addition we show that initiation events occurring at sites other than the DS are also limited to once per cell cycle and that they are ORC-dependent. The deletion of DS increases initiation from alternative origins, which are normally used very infrequently in the mini-EBV genome. The sequence-independent distribution of ORC-binding, pre-RC-assembly, and initiation patterns indicates that a large number of silent origins are present in the mini-EBV genome. We conclude that, in mini-EBV genomes lacking the DS element, the absence of a strong ORC binding site results in an increase of ORC binding at dispersed sites

    Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in Western countries. Numerous risk factors have been reported but the evidence and strength of association is variable. We aimed to identify those risk factors with strong levels of evidence which could be easily assessed by physicians or ophthalmologists to implement preventive interventions or address current behaviours. METHODS: A systematic review identified 18 prospective and cross-sectional studies and 6 case control studies involving 113,780 persons with 17,236 cases of late AMD that included an estimate of the association between late AMD and at least one of 16 pre-selected risk factors. Fixed-effects meta-analyses were conducted for each factor to combine odds ratio (OR) and/or relative risk (RR) outcomes across studies by study design. Overall raw point estimates of each risk factor and associated 95% confidence intervals (CI) were calculated. RESULTS: Increasing age, current cigarette smoking, previous cataract surgery, and a family history of AMD showed strong and consistent associations with late AMD. Risk factors with moderate and consistent associations were higher body mass index, history of cardiovascular disease, hypertension, and higher plasma fibrinogen. Risk factors with weaker and inconsistent associations were gender, ethnicity, diabetes, iris colour, history of cerebrovascular disease, and serum total and HDL cholesterol and triglyceride levels. CONCLUSIONS: Smoking, previous cataract surgery and a family history of AMD are consistent risk factors for AMD. Cardiovascular risk factors are also associated with AMD. Knowledge of these risk factors that may be easily assessed by physicians and general ophthalmologists may assist in identification and appropriate referral of persons at risk of AMD

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia Âź; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-ÎșB localization and IÎșB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-ÎșB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-ÎșB and degradation of IÎșB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-ÎșB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype
    • 

    corecore