145 research outputs found
Clinical Practice Changes After Post-Market Safety Reports on Desmopressin Orally Disintegrating Tablet in Japan: A Single-Center Retrospective Study
Background: Desmopressin orally disintegrating tablet (ODT) was approved in March 2012 in Japan; the post-market safety reports, which warned about adequate initial dose of desmopressin ODT, were published in 2014. However, it is unclear how the warning affected physician and patient behavior. Methods: We performed a retrospective single-center study to compare the clinical situation of Japanese central diabetes insipidus patients before and after the report. Results: Thirty-four patients before October 2014 and 16 patients after November 2014 switched from intranasal desmopressin to desmopressin ODT. The mean follow-up period after the switch to desmopressin ODT was 38 ± 3 months. Patients switching after November 2014 tended to have lower ratios of oral to nasal desmopressin dose at switching and 3 months after the switch (at switching; P = 0.20, 3 months; P = 0.42, respectively), and higher ratios from 6 to 12 months than before October 2014 (6 months; P = 0.93, 9 months; P = 0.52, 12 months; P = 0.80, respectively). Relative doses per initial desmopressin ODT at 9 and 12 months were significantly higher in patients switching after November 2014 than in patients switching before October 2014 (9 months; P = 0.02, 12 months; P = 0.04, respectively). Moreover, logistic regression analysis revealed that the incidence of hyponatremia was dependent on the ratio of nasal to oral desmopressin dose (P = 0.02). In addition, in four out of six patients who had serum sodium level reduced below 130 mEq/L, hyponatremia occurred within 1 month after the switch. Conclusions: A more gradual dose titration after the safety reports was performed, which involved the long-term safety of desmopressin ODT use. Vigilance of hyponatremia in early phase of desmopressin ODT use should be noted
Fully Automated On-Chip Imaging Flow Cytometry System with Disposable Contamination-Free Plastic Re-Cultivation Chip
We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA)) based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing through microchannels on the chip. Sample particles flowing through microchannels on the chip were discriminated by an image-recognition unit with a high-speed camera in real time at the rate of 200 event/s, e.g., microparticles 2.5 μm and 3.0 μm in diameter were differentiated with an error rate of less than 2%. Desired cells were separated automatically from other cells by electrophoretic or dielectrophoretic force one by one with a separation efficiency of 90%. Cells in suspension with fluorescent dye were separated using the same kind of microfluidic chip. Sample of 5 μL with 1 × 106 particle/mL was processed within 40 min. Separated cells could be cultured on the microfluidic chip without contamination. The whole operation of sample handling was automated using 3D micropipetting system. These results showed that the novel imaging flow cytometry system is practically applicable for biological research and clinical diagnostics
Apop-1, a Novel Protein Inducing Cyclophilin D-dependent but Bax/Bak-related Channel-independent Apoptosis
In the intrinsic pathway of apoptosis, mitochondria play a crucial role by releasing cytochrome c from the intermembrane space into the cytoplasm. Cytochrome c release through Bax/Bak-dependent channels in mitochondria has been well documented. In contrast, cyclophilin D (CypD), an important component of permeability transition pore-dependent protein release, remains largely undefined, and no apoptogenic proteins that act specifically in a CypD-dependent manner have been reported to date. Here, we describe a novel and evolutionarily conserved protein, apoptogenic protein (Apop). Mouse Apop-1 expression induces apoptotic death by releasing cytochrome c from mitochondria into the cytosolic space followed by activation of caspase-9 and -3. Apop-1-induced apoptosis is not blocked by Bcl-2 or Bcl-xL, inhibitors of Bax/Bak-dependent channels, whereas it is completely blocked by cyclosporin A, an inhibitor of permeability transition pore. Cells lacking CypD were resistant to Apop-induced apoptosis. Moreover, inhibition of Apop expression prevented the cell death induced by apoptosis-inducing substances. Our findings, thus, indicate that the expression of Apop-1 induces apoptosis though CypD-dependent pathway and that Apop-1 plays roles in cell death under physiological conditions
Transforming somatic mutations of mammalian target of rapamycin kinase in human cancer
Mammalian target of rapamycin (mTOR) is a serine-threonine kinase that acts downstream of the phosphatidylinositol 3-kinase signaling pathway and regulates a wide range of cellular functions including transcription, translation, proliferation, apoptosis, and autophagy. Whereas genetic alterations that result in mTOR activation are frequently present in human cancers, whether the mTOR gene itself becomes an oncogene through somatic mutation has remained unclear. We have now identified a somatic non-synonymous mutation of mTOR that results in a leucine-to-valine substitution at amino acid position 2209 in a specimen of large cell neuroendocrine carcinoma. The mTOR(L2209V) mutant manifested marked transforming potential in a focus formation assay with mouse 3T3 fibroblasts, and it induced the phosphorylation of p70 S6 kinase, S6 ribosomal protein, and eukaryotic translation initiation factor 4E-binding protein 1 in these cells. Examination of additional tumor specimens as well as public and in-house databases of cancer genome mutations identified another 28 independent non-synonymous mutations of mTOR in various cancer types, with 12 of these mutations also showing transforming ability. Most of these oncogenic mutations cluster at the interface between the kinase domain and the FAT (FRAP, ATM, TRRAP) domain in the 3-D structure of mTOR. Transforming mTOR mutants were also found to promote 3T3 cell survival, and their oncogenic activity was sensitive to rapamycin. Our data thus show that mTOR acquires transforming activity through genetic changes in cancer, and they suggest that such tumors may be candidates for molecularly targeted therapy with mTOR inhibitors
Improvements in the degree of understanding the treatment guidelines for schizophrenia and major depressive disorder in a nationwide dissemination and implementation study
Background: To implement clinical practice guidelines (CPGs), it is necessary for psychiatrists to deepen their understanding of the CPGs. The Effectiveness of Guidelines for Dissemination and Education in Psychiatric Treatment (EGUIDE) project is a nationwide dissemination and implementation study of two sets of CPGs for schizophrenia and major depressive disorder (MDD).
Methods: A total of 413 psychiatrists (n = 212 in 2016; n = 201 in 2017) learned the two CPGs in the education program of the EGUIDE project, and clinical knowledge of these CPGs was evaluated at baseline and after the programs. To improve the correct answer rate for clinical knowledge after the programs, we revised the lecture materials associated with items that had a low correct answer rate in 2016 and used the revised lecture materials with the CPGs in 2017. The rates of correct answers after the programs between the 2016 and 2017 groups were compared.
Results: The correct answer rate of one item on the schizophrenia CPG and one item on the MDD CPG tended to be improved (S-D5 and D-C6) and that of one on the MDD CPG was significantly improved (D-D3, P = 0.0008) in the 2017 group compared to those in the 2016 group.
Conclusions: We reported improvements in clinical knowledge of CPGs after the EGUIDE program in the 2017 group following revision of the lecture materials based on results from the 2016 group. These attempts to improve the degree of understanding of CPGs may facilitate the successful dissemination and implementation of psychiatric guidelines in everyday practice
C57BL/KsJ-db/db-ApcMin/+ Mice Exhibit an Increased Incidence of Intestinal Neoplasms
The numbers of obese people and diabetic patients are ever increasing. Obesity and diabetes are high-risk conditions for chronic diseases, including certain types of cancer, such as colorectal cancer (CRC). The aim of this study was to develop a novel animal model in order to clarify the pathobiology of CRC development in obese and diabetic patients. We developed an animal model of obesity and colorectal cancer by breeding the C57BL/KsJ-db/db (db/db) mouse, an animal model of obesity and type II diabetes, and the C57BL/6J-ApcMin/+ (Min/+) mouse, a model of familial adenomatous polyposis. At 15 weeks of age, the N9 backcross generation of C57BL/KsJ-db/db-ApcMin/+ (db/db-Min/+) mice developed an increased incidence and multiplicity of adenomas in the intestinal tract when compared to the db/m-Min/+ and m/m-Min/+ mice. Blood biochemical profile showed significant increases in insulin (8.3-fold to 11.7-fold), cholesterol (1.2-fold to 1.7-fold), and triglyceride (1.2-fold to 1.3-fold) in the db/db-Min/+ mice, when compared to those of the db/m-Min/+ and m/m-Min/+ mice. Increases (1.4-fold to 2.6-fold) in RNA levels of insulin-like growth factor (IGF)-1, IRF-1R, and IGF-2 were also observed in the db/db- Min/+ mice. These results suggested that the IGFs, as well as hyperlipidemia and hyperinsulinemia, promoted adenoma formation in the db/db-Min/+ mice. Our results thus suggested that the db/db-Min/+ mice should be invaluable for studies on the pathogenesis of CRC in obese and diabetes patients and the therapy and prevention of CRC in these patients
Direct Observation of Strand Passage by DNA-Topoisomerase and Its Limited Processivity
Type-II DNA topoisomerases resolve DNA entanglements such as supercoils, knots and catenanes by passing one segment of DNA duplex through a transient enzyme-bridged double-stranded break in another segment. The ATP-dependent passage reaction has previously been demonstrated at the single-molecule level, showing apparent processivity at saturating ATP. Here we directly observed the strand passage by human topoisomerase IIα, after winding a pair of fluorescently stained DNA molecules with optical tweezers for 30 turns into an X-shaped braid. On average 0.51±0.33 µm (11±6 turns) of a braid was unlinked in a burst of reactions taking 8±4 s, the unlinked length being essentially independent of the enzyme concentration between 0.25–37 pM. The time elapsed before the start of processive unlinking decreased with the enzyme concentration, being ∼100 s at 3.7 pM. These results are consistent with a scenario where the enzyme binds to one DNA for a period of ∼10 s, waiting for multiple diffusional encounters with the other DNA to transport it across the break ∼10 times, and then dissociates from the binding site without waiting for the exhaustion of transportable DNA segments
Nutraceutical Approach for Preventing Obesity-Related Colorectal and Liver Carcinogenesis
Obesity and its related metabolic abnormalities, including insulin resistance, alterations in the insulin-like growth factor-1 (IGF-1)/IGF-1 receptor (IGF-1R) axis, and the state of chronic inflammation, increase the risk of colorectal cancer (CRC) and hepatocellular carcinoma (HCC). However, these findings also indicate that the metabolic disorders caused by obesity might be effective targets to prevent the development of CRC and HCC in obese individuals. Green tea catechins (GTCs) possess anticancer and chemopreventive properties against cancer in various organs, including the colorectum and liver. GTCs have also been known to exert anti-obesity, antidiabetic, and anti-inflammatory effects, indicating that GTCs might be useful for the prevention of obesity-associated colorectal and liver carcinogenesis. Further, branched-chain amino acids (BCAA), which improve protein malnutrition and prevent progressive hepatic failure in patients with chronic liver diseases, might be also effective for the suppression of obesity-related carcinogenesis because oral supplementation with BCAA reduces the risk of HCC in obese cirrhotic patients. BCAA shows these beneficial effects because they can improve insulin resistance. Here, we review the detailed relationship between metabolic abnormalities and the development of CRC and HCC. We also review evidence, especially that based on our basic and clinical research using GTCs and BCAA, which indicates that targeting metabolic abnormalities by either pharmaceutical or nutritional intervention may be an effective strategy to prevent the development of CRC and HCC in obese individuals
- …