89 research outputs found

    The structure of electronic polarization and its strain dependence

    Full text link
    The \phi(\kpp)\sim \kpp relation is called polarization structure. By density functional calculations, we study the polarization structure in ferroelectric perovskite PbTiO3_3, revealing (1) the \kpp point that contributes most to the electronic polarization, (2) the magnitude of bandwidth, and (3) subtle curvature of polarization dispersion. We also investigate how polarization structure in PbTiO3_3 is modified by compressive inplane strains. The bandwidth of polarization dispersion in PbTiO3_3 is shown to exhibit an unusual decline, though the total polarization is enhanced. As another outcome of this study, we formulate an analytical scheme for the purpose of identifying what determine the polarization structure at arbitrary \kpp points by means of Wannier functions. We find that \phi(\kpp) is determined by two competing factors: one is the overlaps between neighboring Wannier functions within the plane {\it perpendicular} to the polarization direction, and the other is the localization length {\it parallel} to the polarization direction. Inplane strain increases the former while decreases the latter, causing interesting non-monotonous effects on polarization structure. Finally, polarization dispersion in another paradigm ferroelectric BaTiO3_3 is discussed and compared with that of PbTiO3_3.Comment: 5 Figure

    Enhancing glycolysis attenuates Parkinson's disease progression in models and clinical databases

    Get PDF
    Parkinson's disease (PD) is a common neurodegenerative disease that lacks therapies to prevent progressive neurodegeneration. Impaired energy metabolism and reduced ATP levels are common features of PD. Previous studies revealed that terazosin (TZ) enhances the activity of phosphoglycerate kinase 1 (PGK1), thereby stimulating glycolysis and increasing cellular ATP levels. Therefore, we asked whether enhancement of PGK1 activity would change the course of PD. In toxin-induced and genetic PD models in mice, rats, flies, and induced pluripotent stem cells, TZ increased brain ATP levels and slowed or prevented neuron loss. The drug increased dopamine levels and partially restored motor function. Because TZ is prescribed clinically, we also interrogated 2 distinct human databases. We found slower disease progression, decreased PD-related complications, and a reduced frequency of PD diagnoses in individuals taking TZ and related drugs. These findings suggest that enhancing PGK1 activity and increasing glycolysis may slow neurodegeneration in PD

    Microtermolides A and B from Termite-Associated Streptomyces sp. and Structural Revision of Vinylamycin

    Get PDF
    Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re-examination of the structure originally proposed for vinylamycin (3). Based on a comparison of predicted and experimental 1^1H and 13^{13}C NMR chemical shifts, we propose that vinylamycin’s structure be revised from 3 to 4

    Structural and critical current properties in polycrystalline SmO1-xFxFeAs

    Full text link
    A series of polycrystalline SmO1-xFxFeAs bulks (x=0.15, 0.2, 0.3 and 0.4) were prepared by the conventional solid state reaction. Resistivity, susceptibility, magnetic hysteresis, critical current density and microstructure of these samples have been investigated. It is found that critical transition temperature Tc increases steadily with increasing fluorine content, with the highest onset Tc=53 K at x=0.4. On the other hand, the superconductivity seems correlated with lattice constants; that is, Tc rises with the shrinkage of a-axis while resistivity increases with the enlargement of c-axis. A global critical current density of 1.1x10^4 A/cm^2 at 5 K in self field was achieved in the purest sample. A method of characterization of inter-grain current density is proposed. This method gives an inter-grain Jc of 3.6x10^3 A/cm^2 at 5 K in self field, in contrast to the intra-grain Jc of 10^6 A/cm^2. The effect of composition gradients on the inter-grain Jc in SmO1-xFxFeAs is also discussed.Comment: 18 pages, 7 figure

    Superconducting properties of SmO1-xFxFeAs wires with Tc = 52 K prepared by the powder-in-tube method

    Full text link
    We demonstrate that Ta sheathed SmO1-xFxFeAs wires were successfully fabricated by the powder-in-tube (PIT) method for the first time. Structural analysis by mean of x-ray diffraction shows that the main phase of SmO1-xFxFeAs was obtained by this synthesis method. The transition temperature of the SmO0.65F0.35FeAs wires was confirmed to be as high as 52 K. Based on magnetization measurements, it is found that a globe current can flow on macroscopic sample dimensions with Jc of ~3.9x10^3 A/cm^2 at 5 K and self field, while a high Jc about 2x10^5 A/cm^2 is observed within the grains, suggesting that a significant improvement in the globle Jc is possible. It should be noted that the Jc exhibits a very weak field dependence behavior. Furthermore, the upper critical fields (Hc2) determined according to the Werthamer-Helfand-Hohenberg formula are (T= 0 K) = 120 T, indicating a very encouraging application of the new superconductors.Comment: 14 pages, 6 figure

    Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance:an individual-patient- and sequence-level meta-analysis

    Get PDF
    Regional and subtype-specific mutational patterns of HIV-1 transmitted drug resistance (TDR) are essential for informing first-line antiretroviral (ARV) therapy guidelines and designing diagnostic assays for use in regions where standard genotypic resistance testing is not affordable. We sought to understand the molecular epidemiology of TDR and to identify the HIV-1 drug-resistance mutations responsible for TDR in different regions and virus subtypes.status: publishe
    corecore