11 research outputs found

    Extremely High Methane Concentration in Bottom Water and Cored Sediments from Offshore Southwestern Taiwan

    Full text link
    It has been found that Bottom Simulating Reflections (BSRs), which infer the existence of potential gas hydrates underneath seafloor sediments, are widely distributed in offshore southwestern Taiwan. Fluids and gases derived from dissociation of gas hydrates, which are typically methane enriched, affect the composition of seawater and sediments near venting areas. Hence, methane concentration of seawater and sediments become useful proxies for exploration of potential gas hydrates in a given area. We systematically collected bottom waters and sedimentary core samples for dissolved and pore-space gas analyses through five cruises: ORI-697, ORI-718, ORII-1207, ORII-1230, and ORI-732 from 2003 to 2005 in this study. Some sites with extremely high methane concentrations have been found in offshore southwestern Taiwan, e.g., sites G23 of ORI-697, N8 of ORI-718, and G96 of ORI-732. The methane concentrations of cored sediments display an increasing trend with depth. Furthermore, the down-core profiles of methane and sulfate reveal very shallow depths of sulfate methane interface (SMI) at some sites in this study. It implies sulfate reduction being mainly driven by the process of anaerobic methane oxidation (AMO) in sediments; thus indicating that there is a methane-enriched venting source, which may be the product of dissociation of gas hydrates in this area

    Methanoculleus taiwanensis sp. nov., a methanogen isolated from deep marine sediment at the deformation front area near Taiwan

    No full text
    A mesophilic, hydrogenotrophic methanogen, strain CYW4(T), was isolated from deep-sea sediment obtained by the Ocean Researcher I cruiser, ORI-961, in 2011. The sediment was from the deformation front area offshore of south-western Taiwan. Here, seismic reflections indicated that methane hydrates were abundant. The methanogenic substrates utilized by strain CYW4(T) were formate and H2/CO2, but not acetate, secondary alcohols, methylamines, methanol and ethanol. Cells of strain CYW4(T) were non-motile, irregular cocci and 0.6-1.5 ”m in diameter. The S-layer protein had an Mr of 112 000. The optimum growth conditions were at 37 °C, pH 8.1 and 0.08 M NaCl. Growth of the strain was stimulated by acetate. The G+C content of the chromosomal DNA of strain CYW4(T) was 61 mol%. Phylogenetic analysis revealed that strain CYW4(T) was most closely related to Methanoculleus marisnigri JR1(T) (96.82 % 16S rRNA gene sequence similarity). Based on the morphological, phenotypic and phylogenetic characteristics presented here, it is evident that strain CYW4(T) represents a novel species of the genus Methanoculleus, and the name Methanoculleus taiwanensis sp. nov. is proposed. The type strain is CYW4(T) ( = BCRC AR10043(T) = NBRC 110782(T)). The optical density of cultures of strain CYW4(T) dropped abruptly upon entering the stationary growth phase. During this time numerous particles of approximately 50 nm in diameter were observed on and around the cells. This suggests that strain CYW4(T) harbours a lytic virus that is induced in the stationary phase, which is of interest because only a few lytic viruses have been reported in methanogens

    Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano

    No full text
    A mesophilic, hydrogenotrophic methanogen, strain S3Fa(T), was isolated from sediments collected by Ocean Researcher I cruise ORI-934 in 2010 near the submarine mud volcano MV4 located at the upper slope of south-west Taiwan. The methanogenic substrates utilized by strain S3Fa(T) were formate and H2/CO2 but not acetate, secondary alcohols, methylamines, methanol or ethanol. Cells of strain S3Fa(T) were non-motile, irregular cocci, 0.5-1.0 ÎŒm in diameter. The surface-layer protein showed an Mr of 128,000.The optimum growth conditions were 37 °C, pH 7.1 and 0.17 M NaCl. The DNA G+C content of the genome of strain S3Fa(T) was 62.3 mol%. Phylogenetic analysis revealed that strain S3Fa(T) was most closely related to Methanoculleus marisnigri JR1(T) (99.3% 16S rRNA gene sequence similarity). Genome relatedness between strain S3Fa(T) and Methanoculleus marisnigri JR1(T) was computed using both genome-to-genome distance analysis (GGDA) and average nucleotide identity (ANI) with values of 46.3-55.5% and 93.08%, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data, it is evident that strain S3Fa(T) represents a novel species of the genus Methanoculleus, for which the name Methanoculleus sediminis sp. nov. is proposed. The type strain is S3Fa(T) ( = BCRC AR10044(T) = DSM 29354(T))

    Helium and methane sources and fluxes of shallow submarine hydrothermal plumes near the Tokara Islands, Southern Japan

    Get PDF
    Shallow submarine volcanoes have been newly discovered near the Tokara Islands, which are situated at the volcanic front of the northern Ryukyu Arc in southern Japan. Here, we report for the first time the volatile geochemistry of shallow hydrothermal plumes, which were sampled using a CTD-RMS system after analyzing water column images collected by multi-beam echo sounder surveys. These surveys were performed during the research cruise KS-14-10 of the R/V Shinsei Maru in a region stretching from the Wakamiko Crater to the Tokara Islands. The (3)He flux and methane flux in the investigated area are estimated to be (0.99–2.6) × 10(4) atoms/cm(2)/sec and 6–60 t/yr, respectively. The methane in the region of the Tokara Islands is a mix between abiotic methane similar to that found in the East Pacific Rise and thermogenic one. Methane at the Wakamiko Crater is of abiotic origin but affected by isotopic fractionation through rapid microbial oxidation. The helium isotopes suggest the presence of subduction-type mantle helium at the Wakamiko Crater, while a larger crustal component is found close to the Tokara Islands. This suggests that the Tokara Islands submarine volcanoes are a key feature of the transition zone between the volcanic front and the spreading back-arc basin

    Origin of methane-rich natural gas at the West Pacific convergent plate boundary

    Get PDF
    International audienceMethane emission from the geosphere is generally characterized by a radiocarbon-free signature and might preserve information on the deep carbon cycle on Earth. Here we report a clear relationship between the origin of methane-rich natural gases and the geodynamic setting of the West Pacific convergent plate boundary. Natural gases in the frontal arc basin (South Kanto gas fields, Northeast Japan) show a typical microbial signature with light carbon isotopes, high CH 4 /C 2 H 6 and CH 4 / 3 He ratios. In the Akita-Niigata region-which corresponds to the slope stretching from the volcanic-arc to the back-arc-a thermogenic signature characterize the gases, with prevalence of heavy carbon isotopes, low CH 4 /C 2 H 6 and CH 4 / 3 He ratios. Natural gases from mud volcanoes in South Taiwan at the collision zone show heavy carbon isotopes, middle CH 4 /C 2 H 6 ratios and low CH 4 / 3 He ratios. On the other hand, those from the Tokara Islands situated on the volcanic front of Southwest Japan show the heaviest carbon isotopes, middle CH 4 /C 2 H 6 ratios and the lowest CH 4 / 3 He ratios. The observed geochemical signatures of natural gases are clearly explained by a mixing of microbial, thermogenic and abiotic methane. An increasing contribution of abiotic methane towards more tectonically active regions of the plate boundary is suggested. Volatile elements are transported from the Earth's interior to the hydrosphere and the atmosphere through volcanic and hydrothermal systems in addition to micro-and macro-seepages from active tectonic areas 1,2. If the geological carbon cycle is well documented for its oxide forms, such as CO
    corecore