54 research outputs found

    miR-202 suppresses cell proliferation in human hepatocellular carcinoma by downregulating LRP6 post-transcriptionally

    Get PDF
    AbstractMicroRNAs have emerged as important regulators of carcinogenesis. In the current study, we observed that microRNA-202 (miR-202) is downregulated in hepatocellular carcinoma (HCC) cells and tissues, indicating a significant correlation between miR-202 expression and HCC progression. Overexpression of miR-202 in HCC cells suppressed cell proliferation and tumorigenicity, while downregulation of miR-202 enhanced the cells’ proliferative capacity. Furthermore, we identified low-density lipoprotein receptor-related protein 6 (LRP6) as a direct target of miR-202. miR-202 suppresses the expression of LRP6 by binding to the 3′-untranslated region (UTR) of its mRNA. Finally, we found that silencing the expression of LRP6 is the essential biological function of miR-202 during HCC cell proliferation. Collectively, our findings reveal that miR-202 is a potential tumor suppressive miRNA that participates in carcinogenesis of human HCC by suppressing LRP6 expression

    A laboratory study on risk assessment of microcystin-RR in cropland

    Get PDF
    The persistence time and risk of microcystin-RR (MC-RR) in cropland via irrigation were investigated under laboratory conditions. In order to evaluate the efficiency of the potential adsorption and biodegradation of MC-RR in cropland and the persistence time of MC-RR for crop irrigation, high performance liquid chromatography (HPLC) was used to quantify the amount of MC-RR in solutions. Our study indicated that MC-RR could be adsorbed and biodegraded in cropland soils. MC-RR at 6.5 mg/L could be completely degraded within 6 days with a lag phase of 1 - 2 days. In the presence of humic acid, the same amount of MC-RR could be degraded within 4 days without a lag phase. Accordingly, the persistence time of MC-RR in cropland soils should be about 6 days. This result also suggested the beneficial effects of the organic fertilizer utilization for the biodegradation of MC-RR in cropland soils. Our studies also demonstrated that MC-RR at low concentration ( 100 mu g/L) significantly inhibited the growth of plants. High sensitivity of the sprouting stage plants to MC-RR treatments as well as the strong inhibitory effects resulting from prolonged irrigation further indicated that this MC-RR growth-inhibition may vary with the duration of irrigation and life stage of the plants. (c) 2007 Published by Elsevier Ltd.The persistence time and risk of microcystin-RR (MC-RR) in cropland via irrigation were investigated under laboratory conditions. In order to evaluate the efficiency of the potential adsorption and biodegradation of MC-RR in cropland and the persistence time of MC-RR for crop irrigation, high performance liquid chromatography (HPLC) was used to quantify the amount of MC-RR in solutions. Our study indicated that MC-RR could be adsorbed and biodegraded in cropland soils. MC-RR at 6.5 mg/L could be completely degraded within 6 days with a lag phase of 1 - 2 days. In the presence of humic acid, the same amount of MC-RR could be degraded within 4 days without a lag phase. Accordingly, the persistence time of MC-RR in cropland soils should be about 6 days. This result also suggested the beneficial effects of the organic fertilizer utilization for the biodegradation of MC-RR in cropland soils. Our studies also demonstrated that MC-RR at low concentration ( 100 mu g/L) significantly inhibited the growth of plants. High sensitivity of the sprouting stage plants to MC-RR treatments as well as the strong inhibitory effects resulting from prolonged irrigation further indicated that this MC-RR growth-inhibition may vary with the duration of irrigation and life stage of the plants. (c) 2007 Published by Elsevier Ltd

    Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials

    Get PDF
    INTRODUCTION: The Alzheimer's Disease Neuroimaging Initiative (ADNI) has continued development and standardization of methodologies for biomarkers and has provided an increased depth and breadth of data available to qualified researchers. This review summarizes the over 400 publications using ADNI data during 2014 and 2015. METHODS: We used standard searches to find publications using ADNI data. RESULTS: (1) Structural and functional changes, including subtle changes to hippocampal shape and texture, atrophy in areas outside of hippocampus, and disruption to functional networks, are detectable in presymptomatic subjects before hippocampal atrophy; (2) In subjects with abnormal β-amyloid deposition (Aβ+), biomarkers become abnormal in the order predicted by the amyloid cascade hypothesis; (3) Cognitive decline is more closely linked to tau than Aβ deposition; (4) Cerebrovascular risk factors may interact with Aβ to increase white-matter (WM) abnormalities which may accelerate Alzheimer's disease (AD) progression in conjunction with tau abnormalities; (5) Different patterns of atrophy are associated with impairment of memory and executive function and may underlie psychiatric symptoms; (6) Structural, functional, and metabolic network connectivities are disrupted as AD progresses. Models of prion-like spreading of Aβ pathology along WM tracts predict known patterns of cortical Aβ deposition and declines in glucose metabolism; (7) New AD risk and protective gene loci have been identified using biologically informed approaches; (8) Cognitively normal and mild cognitive impairment (MCI) subjects are heterogeneous and include groups typified not only by "classic" AD pathology but also by normal biomarkers, accelerated decline, and suspected non-Alzheimer's pathology; (9) Selection of subjects at risk of imminent decline on the basis of one or more pathologies improves the power of clinical trials; (10) Sensitivity of cognitive outcome measures to early changes in cognition has been improved and surrogate outcome measures using longitudinal structural magnetic resonance imaging may further reduce clinical trial cost and duration; (11) Advances in machine learning techniques such as neural networks have improved diagnostic and prognostic accuracy especially in challenges involving MCI subjects; and (12) Network connectivity measures and genetic variants show promise in multimodal classification and some classifiers using single modalities are rivaling multimodal classifiers. DISCUSSION: Taken together, these studies fundamentally deepen our understanding of AD progression and its underlying genetic basis, which in turn informs and improves clinical trial desig

    Deposition and characterization of diamond coatings on pure titanium

    No full text
    Titanium alloys are widely used in aerospace and biomedical applications. This is due to a good combination of mechanical properties, corrosion resistance, high elastic modulus and low density. However, they are notorious for poor tribological properties such as poor abrasive and adhesive wear resistance. Titanium alloys are prone to fretting wear and fretting fatigue.Doctor of Philosophy (MPE

    Methods of obtaining, verifying, and reusing optimal biological solutions

    No full text
    The practice of using analogies to biological systems for deriving innovative solutions to difficult engineering problems is called biologically inspired design. Although some procedures and methodologies for biologically inspired design have been presented in the literature, they did not specifically support obtaining and applying optimal solutions in living organisms. This article fills this research gap by presenting two methods of obtaining, verifying, and reusing biological optimal solutions (refer to biological forms, shapes, and structures) to solve engineering optimisation problems. The first method develops an analytical model, formulates an optimisation problem explicitly, and then verifies the optimal solution theoretically. An application example of this method is provided. The second method is based on experiments, and uses experimental design and statistical analysis to verify the optimal solution. This method is applied to the design of the flapping Micro Air Vehicles, which reuse an optimal biological solution (the shape of dragonfly wing). The procedures, requirements and advantages of both methods are discussed. We show that by using the two methods, scientists and engineers can efficiently obtain, verify, and reuse the optimal solutions from biological organisms

    Effects of pre-treatments and interlayers on the nucleation and growth of diamond coatings on titanium substrates

    No full text
    During diamond deposition on titanium substrates, two processes exist: (1) diffusion of hydrogen into a titanium substrate and the formation of hydride thereby degrading the mechanical properties of the substrate; and (2) competition among the rapid diffusion of carbon atoms into substrates, the formation of carbide and the nucleation of diamond crystals (thereby affecting the nucleation and growth rate of the diamond coating). To increase the diamond nucleation rate and prevent the rapid diffusion of hydrogen and carbon into the substrate, different surface treatments and interlayers were studied in this paper. Results showed that polishing with diamond pastes and ultrasonic pre-treatment in diamond suspensions will significantly increase the nuclei density of diamond crystals. However, the diffusion of hydrogen into the substrate could not be prevented. Pre-etching of the titanium substrate using hydrogen plasma for a short time significantly increased the nuclei density of diamond crystals. Results showed that on a TiN interlayer, there was no significant improvement in diamond nucleation and growth, and the deposited diamond coatings showed poor adhesion. New diamond crystals were formed on the DLC interlayer in which DLC acted as the precursor for diamond nucleation. However, the so-formed diamond coating showed spallation. The plasma nitrided layer could prevent the rapid diffusion of hydrogen and carbon into the titanium substrate, but results showed a relatively low nucleation density of diamond crystals and poor adhesion. A graded interlayer combining plasma nitriding followed by plasma carbonitriding was effective in preventing the rapid diffusion of hydrogen and carbon into the substrate and improving the nucleation rate and adhesion of diamond coating
    corecore