16 research outputs found

    An explorative study to enable environmentally conscious manufacturing for an industrial gearbox manufacturing organization

    Full text link
    In recent years, environmentally conscious manufacturing (ECM) has become an important aspect and proactive approach for majority of the manufacturing organizations in India. The reason is that ECM not only helps to produce environment friendly, but also helps to make money by reducing cost or achieving competitive advantage. Industrial gearbox manufacturing organizations have significant environmental impacts as industrial gearbox manufacturing involves several steps which use valuable resources and pollute the environment. Hence, this paper presents an explorative environmental study of an Indian industrial gearbox manufacturing organization. The objective of the current paper is (i) to identify the environmental problems and environmentally conscious manufacturing indicators (ECMI), (ii) to find out the root causes of these problems and (iii) to solve the root causes based on the available state-of-the-art literature. This research work not only reviews the efficient environment friendly manufacturing techniques, but also helps the organization to become eco-efficient by producing environment friendly while making money. First ECMIs selected from literature review, are validated through process mapping. Then these indicators are prioritized using analytic hierarchy process (AHP) to find out the critical environmentally conscious manufacturing indicators (CECMI). The sources of CECMIs are identified using either data envelopment analysis (DEA) or direct observation of the available database. Finally, some possible solutions are also addressed in this paper

    Power management and control strategies for off-grid hybrid power systems with renewable energies and storage

    Get PDF
    This document is the Accepted Manuscript of the following article: Belkacem Belabbas, Tayeb Allaoui, Mohamed Tadjine, and Mouloud Denai, 'Power management and control strategies for off-grid hybrid power systems with renewable energies and storage', Energy Systems, September 2017. Under embargo. Embargo end date: 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s12667-017-0251-y.This paper presents a simulation study of standalone hybrid Distributed Generation Systems (DGS) with Battery Energy Storage System (BESS). The DGS consists of Photovoltaic (PV) panels as Renewable Power Source (RPS), a Diesel Generator (DG) for power buck-up and a BESS to accommodate the surplus of energy, which may be employed in times of poor PV generation. While off-grid DGS represent an efficient and cost-effective energy supply solution particularly to rural and remote areas, fluctuations in voltage and frequency due to load variations, weather conditions (temperature, irradiation) and transmission line short-circuits are major challenges. The paper suggests a hierarchical Power Management (PM) and controller structure to improve the reliability and efficiency of the hybrid DGS. The first layer of the overall control scheme includes a Fuzzy Logic Controller (FLC) to adjust the voltage and frequency at the Point of Common Coupling (PCC) and a Clamping Bridge Circuit (CBC) which regulates the DC bus voltage. A maximum power point tracking (MPPT) controller based on FLC is designed to extract the optimum power from the PV. The second control layer coordinates among PV, DG and BESS to ensure reliable and efficient power supply to the load. MATLAB Simulink is used to implement the overall model of the off-grid DGS and to test the performance of the proposed control scheme which is evaluated in a series of simulations scenarios. The results demonstrated the good performance of the proposed control scheme and effective coordination between the DGS for all the simulation scenarios considered.Peer reviewedFinal Accepted Versio

    Potential of microfinanced solar water pumping systems for irrigation in rural areas of Burkina Faso

    No full text
    Abstract Background The population in Burkina Faso is rapidly adopting irrigation to adapt to negative impacts of climate change like prolonged drought, rainfall variability and desertification. The solar water pumping systems (SWPS) could be an attractive option in view of climate change impacts, increasing diesel costs and grid electricity scarcity that the country suffers. However, due to high initial cost SWPS, population mainly uses diesel water pumps (DWPs). The main objective of this study is to assess the potential of microfinanced SWPS for irrigation in rural areas of Burkina Faso. Methods Based on ground data collection and profitability analysis, this study investigates the best SWPS market segments for irrigation in rural areas of Burkina Faso. The case study of the village of Korsimoro was considered. Especially, the study is focused on the onion crop as it is the most cultivated crop in the area of study. Results It was found that there are three main SWPS market segments in the area of study: market segment 1 which is that of farmers individually owning and using a DWP with rated power between 1.5 and 3 kW, market segment 2 which is composed of farmers individually owning a DWP of rated power ranging from 4 to 7.5 kW and market segment 3 which is that of farmers paying for pumping services offered by a pump owner in market segment 2. The study revealed that replacing polyvinyl chloride (PVC) water storage tank by DWPs to be used on cloudy days is profitable for all the market segments. The study showed also that at 9.5% interest charged on agricultural equipment, only SWPS for the market segments 2 and 3 can be fully financed through microloan without risk of long payback period. Conclusions The results imply that more attention should be given to SWPS in the context of rural areas of Burkina Faso to enhance the productive use of energy and also mitigate the impacts of climate change on the environment. In addition, the study provides detailed information to farmers about how they can make more profitable their activities

    Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The "flexy-energy" concept

    No full text
    Access to energy is known as a key issue for poverty reduction. Electrification rate of sub-Saharan countries is one of the lowest among the developing countries. However, this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy-energy" concept of hybrid solar PV/diesel/biofuel power plant, without battery storage, is performed in this paper. This concept is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. For landlocked countries like Burkina Faso, this concept could help them reducing their electricity bill (then their fuel consumption) and accelerate their rural and peri-urban electrification coverage.Flexy-energy Hybrid system Off-grid system

    Design and Operational Management of Energy Hubs: A DS4S (Screening, Selection, Sizing, and Scheduling) Framework

    Full text link
    The contemporary climate change crisis has motivated the need for decentralization of energy networks. Over recent years, several often closely defined concepts have been introduced for decentralized energy networks. These include “microgrid,” “mesogrid,” “nanogrid,” “energy internet,” “community energy network,” “social energy network,” “peer-to-peer energy network,” and “virtual power plant.” The critical challenge in this context is determining the optimal extent of decentralization and the design and operation of new local energy networks. With the rapid developments in distributed generation and storage (DGS) technologies and the introduction of various products with diverse specifications, the selection of a DGS system, with decisions as to its appropriate size, has become a complex problem DS4S is a decision support tool based on discrete optimization algorithms. It supports energy hub developers in the concurrent screening, selection, sizing, and scheduling of DGS systems based on various types of objective (minimum initial investment, minimum levelized cost of energy, highest reliability, etc.). It supports both on-network and off-network conditions
    corecore