95 research outputs found

    NASDA knowledge-based network planning system

    Get PDF
    One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced

    Male urine signals social rank in the Mozambique tilapia (Oreochromis mossambicus)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The urine of freshwater fish species investigated so far acts as a vehicle for reproductive pheromones affecting the behaviour and physiology of the opposite sex. However, the role of urinary pheromones in intra-sexual competition has received less attention. This is particularly relevant in lek-breeding species, such as the Mozambique tilapia (<it>Oreochromis mossambicus</it>), where males establish dominance hierarchies and there is the possibility for chemical communication in the modulation of aggression among males. To investigate whether males use urine during aggressive interactions, we measured urination frequency of dye-injected males during paired interactions between size-matched males. Furthermore, we assessed urinary volume stored in the bladder of males in a stable social hierarchy and the olfactory potency of their urine by recording of the electro-olfactogram.</p> <p>Results</p> <p>Males released urine in pulses of short duration (about one second) and markedly increased urination frequency during aggressive behaviour, but did not release urine whilst submissive. In the stable hierarchy, subordinate males stored less urine than males of higher social rank; the olfactory potency of the urine was positively correlated with the rank of the male donor.</p> <p>Conclusion</p> <p>Dominant males store urine and use it as a vehicle for odorants actively released during aggressive disputes. The olfactory potency of the urine is positively correlated with the social status of the male. We suggest that males actively advertise their dominant status through urinary odorants which may act as a 'dominance' pheromone to modulate aggression in rivals, thereby contributing to social stability within the lek.</p

    Humic acid interferes with species recognition in zebrafish (Danio rerio)

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Chemical Ecology 33 (2007): 2090-2096, doi:10.1007/s10886-007-9377-z.Few studies have addressed how chemosensation may be impaired by chemical alterations of the environment and anthropogenic disturbance. Humic acid (HA) is a pervasive, naturally occurring organic derivative found in aquatic and terrestrial environments; human activity, however, can lead to elevated levels of HA. Recent studies suggest that environments that contain high levels of HA may hinder chemical communication. We tested the ability of adult zebrafish (Danio rerio) to discriminate between conspecific and heterospecific urinary chemical cues found in the presence and absence of HA. We show that high humic acid levels (200 mg/l) can impair the ability to differentiate conspecifics from heterospecifics. We also found that zebrafish prefer untreated water over HA-treated water. These findings suggest that, in addition to human-produced synthetic compounds, changes in the abundance of naturally occurring substances may also negatively impact natural behaviors in aquatic species by disturbing the sensory environment

    Aortic stiffness as a marker of cardiac function and myocardial strain in patients undergoing aortic valve replacement

    Get PDF
    Background: Cardiac function and myocardial strain are affected by cardiac afterload, which is in part due to the stiffness of the aortic wall. In this study, we hypothesize that aortic pulse wave velocity (PWV) as a marker of aortic stiffness correlates with conventional clinical and biochemical markers of cardiac function and perioperative myocardial strain in aortic valve replacement (AVR). Methods: Patients undergoing AVR for aortic stenosis between June 2010 and August 2012 were recruited for inclusion in this study. PWV, NYHA class and left ventricular (LV) function were assessed pre-operatively. PWV was analysed both as a continuous and dichotomous variable according to age-standardized reference values. B-type natriuretic peptide (BNP) was measured pre-operatively, and at 3 h and 18-24 h after cardiopulmonary bypass (CPB). NYHA class, leg edema, and LV function were recorded at follow-up (409 ± 159 days). Results: Fifty-six patients (16 females) with a mean age of 71 ± 8.4 years were included, with 50 (89%) patients completing follow-up. The NYHA class of PWV-norm patients was significantly lower than PWV-high patients both pre- and post-operatively. Multiple logistic regression also highlighted PWV-cut off as an independent predictor of NYHA class pre- and post-operatively (OR 8.3, 95%CI [2.27,33.33] and OR 14.44, 95%CI [1.49,139.31] respectively). No significant relationship was observed between PWV and either LV function or plasma BNP. Conclusion: In patients undergoing AVR for aortic stenosis, PWV is independently related to pre- and post-operative NYHA class but not to LV function or BNP. These findings provisionally support the use of perioperative PWV as a non-invasive marker of clinical functional status, which when used in conjunction with biomarkers of myocardial strain such as BNP, may provide a holistic functional assessment of patients undergoing aortic valve surgery. However, in order for PWV assessment to be translated into clinical practice and utilised as more than simply a research tool, further validation is required in the form of larger prospective studies specifically designed to assess the relationship between PWV and these functional clinical outcomes

    Virtual Reality as a Tool for Evaluation of Repetitive Rhythmic Movements in the Elderly and Parkinson's Disease Patients

    Get PDF
    This work presents an immersive Virtual Reality (VR) system to evaluate, and potentially treat, the alterations in rhythmic hand movements seen in Parkinson's disease (PD) and the elderly (EC), by comparison with healthy young controls (YC). The system integrates the subjects into a VR environment by means of a Head Mounted Display, such that subjects perceive themselves in a virtual world consisting of a table within a room. In this experiment, subjects are presented in 1st person perspective, so that the avatar reproduces finger tapping movements performed by the subjects. The task, known as the finger tapping test (FT), was performed by all three subject groups, PD, EC and YC. FT was carried out by each subject on two different days (sessions), one week apart. In each FT session all subjects performed FT in the real world (FTREAL) and in the VR (FTVR); each mode was repeated three times in randomized order. During FT both the tapping frequency and the coefficient of variation of inter-tap interval were registered. FTVR was a valid test to detect differences in rhythm formation between the three groups. Intra-class correlation coefficients (ICC) and mean difference between days for FTVR (for each group) showed reliable results. Finally, the analysis of ICC and mean difference between FTVR vs FTREAL, for each variable and group, also showed high reliability. This shows that FT evaluation in VR environments is valid as real world alternative, as VR evaluation did not distort movement execution and detects alteration in rhythm formation. These results support the use of VR as a promising tool to study alterations and the control of movement in different subject groups in unusual environments, such as during fMRI or other imaging studies

    Chemicals released by male sea cucumber mediate aggregation and spawning behaviours

    Get PDF
    The importance of chemical communication in reproduction has been demonstrated in many marine broadcast spawners. However, little is known about the use of chemical communication by echinoderms, the nature of the compounds involved and their mechanism(s) of action. Here, the hypothesis that the sea cucumber Holothuria arguinensis uses chemical communication for aggregation and spawning was tested. Water conditioned by males, but not females, attracted both males and females; gonad homogenates and coelomic fluid had no effect on attraction. Male spawning water, but not female spawning water, stimulated males and females to release their gametes; the spermatozoa alone did not induce spawning. H. arguinensis male spawning water also induced spawning in the phylogenetically related H. mammata. This indicates that males release pheromones together with their gametes that induce spawning in conspecifics and possibly sympatric species. Finally, the male pheromone seems to be a mixture with at least one labile compound (biological activity is lost after four hours at ambient temperature) possibly including phosphatidylcholines. The identification of pheromones in sea cucumbers offers a new ecological perspective and may have practical applications for their aquaculture.FCT - Foundation for Science and Technology [UID/Multi/04326/2013, SFRH/BD/90761/2012]info:eu-repo/semantics/publishedVersio

    Chemical cues and pheromones in the sea lamprey (Petromyzon marinus)

    Get PDF
    Chemical cues and pheromones guide decisions in organisms throughout the animal kingdom. The neurobiology, function, and evolution of olfaction are particularly well described in insects, and resulting concepts have driven novel approaches to pest control. However, aside from several exceptions, the olfactory biology of vertebrates remains poorly understood. One exception is the sea lamprey (Petromyzon marinus), which relies heavily upon olfaction during reproduction. Here, we provide a broad review of the chemical cues and pheromones used by the sea lamprey during reproduction, including overviews of the sea lamprey olfactory system, chemical cues and pheromones, and potential applications to population management. The critical role of olfaction in mediating the sea lamprey life cycle is evident by a well-developed olfactory system. Sea lamprey use chemical cues and pheromones to identify productive spawning habitat, coordinate spawning behaviors, and avoid risk. Manipulation of olfactory biology offers opportunities for management of populations in the Laurentian Great Lakes, where the sea lamprey is a destructive invader. We suggest that the sea lamprey is a broadly useful organism with which to study vertebrate olfaction because of its simple but well-developed olfactory organ, the dominant role of olfaction in guiding behaviors during reproduction, and the direct implications for vertebrate pest management

    Near-future CO2 levels impair the olfactory system of a marine fish

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordData availability: All raw sequence data are accessible at the NCBI Sequence Read Archive through accession number SRP097118. Water chemistry, behaviour and electrophysiology data are available through Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.884674).Survival of marine fishes that are exposed to elevated near-future CO2levels is threatened by their altered responses to sensory cues. Here we demonstrate a physiological and molecular mechanism in the olfactory system that helps to explain altered behaviour under elevated CO2. We combine electrophysiology measurements and transcriptomics with behavioural experiments to investigate how elevated CO2affects the olfactory system of European sea bass (Dicentrarchus labrax). When exposed to elevated CO2(approximately 1,000 µatm), fish must be up to 42% closer to an odour source for detection, compared with current CO2levels (around 400 µatm), decreasing their chances of detecting food or predators. Compromised olfaction correlated with the suppression of the transcription of genes involved in synaptic strength, cell excitability and wiring of the olfactory system in response to sustained exposure to elevated CO2levels. Our findings complement the previously proposed impairment of γ-aminobutyric acid receptors, and indicate that both the olfactory system and central brain function are compromised by elevated CO2levels.This study was supported by grants from Association of European Marine Biology Laboratories (227799), the Natural Environment Research Council (R.W.W.; NE/H017402/1), the Biotechnology and Biological Sciences Research Council (R.W.W.; BB/D005108/1), Fundação para a Ciência e Tecnologia (Portuguese Science Ministry) (UID/Multi/04326/2013) and a Royal Society Newton International Fellowship to C.S.P. C.S.P. is also a beneficiary of a Starting Grant from AXA
    corecore