

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in: *Nature Climate Change*

Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa44257

Paper:

Porteus, C., Hubbard, P., Uren Webster, T., van Aerle, R., Canário, A., Santos, E. & Wilson, R. (2018). Near-future CO2 levels impair the olfactory system of a marine fish. *Nature Climate Change, 8*(8), 737-743. http://dx.doi.org/10.1038/s41558-018-0224-8

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

Near-future carbon dioxide levels impair the olfactory system of a marine fish

Cosima S. Porteus^{1*}, Peter C. Hubbard², Tamsyn M. Uren Webster³, Ronny van Aerle⁴, Adelino V. M. Canário², Eduarda M. Santos¹, Rod W. Wilson¹

¹Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK

²Centro de Ciências do Mar, Campus de Gambelas, Universidade do Algarve, Faro,

Algarve, 8005-139 Portugal

³Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK

⁴Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth,

Dorset, DT4 8UB, UK

*email: cosimaporteus@gmail.com

Survival of marine fishes exposed to elevated near-future CO₂ levels is 1 threatened by their altered responses to sensory cues. Here we demonstrate a 2 novel physiological and molecular mechanism based in the olfactory system 3 which helps explain altered behavior under elevated CO₂. We combine 4 electrophysiology and high throughput sequencing with behavioral 5 experiments to investigate how elevated CO₂ affects the olfactory system of 6 European sea bass (*Dicentrarchus labrax*), an economically important species. 7 Under elevated CO₂ (~1000 μatm) fish need to be up to 42% closer to an odor 8 source for detection, compared with current CO₂ levels (~400 µatm), 9 decreasing their chances of detecting food or predators. These findings 10 11 correlated with a suppression in the transcription of genes involved in synaptic strength, cell excitability, and wiring of the olfactory system in 12 response to sustained exposure to elevated CO₂. Our results contrast with, but 13 complement, the previously proposed mechanism of impaired 14 neurotransmitter (y-aminobutyric acid) function, and demonstrate that both the 15 olfactory system and central brain function are compromised by elevated CO₂ 16 in the oceans, with potentially major negative impacts on fish globally. 17 Fish rely heavily on their olfaction for finding food^{1, 2}, recognizing conspecifics and 18 predators^{1, 3, 4}, for the perception of reproductive status⁵ and homing towards 19 suitable habitats^{6, 7, 8, 9}, including spawning grounds and larval settlement¹⁰. The 20 predicted end-of-the-century CO2 levels (800-1000 µatm) cause ocean acidification 21 (elevated H⁺, reduced pH) and have been shown to have negative effects on the 22 sensory-related behavior and learning of most fish species studied to-date^{3, 4, 11, 12, 13} 23 including sharks^{14, 15}. Moreover, coral reef fishes exposed to elevated CO₂ levels 24 predicted for the year 2100, show a 9-fold increase in mortality, when returned to the 25

wild as compared with fish exposed to current conditions⁴. This suggests the
potential for a major ecologically-relevant impairment of fitness of marine fishes as a
consequence of exposure to elevated CO₂.

To explain the effects of elevated CO_2 on fish behavior, changes in brain 29 neurotransmitter function have been proposed as the sole mechanism responsible^{11,} 30 ^{16, 17, 18}. To date, there has been no consideration of mechanisms operating outside 31 of the central processing of sensory information. A direct effect of seawater pH or 32 CO₂ on the peripheral olfactory system was dismissed in marine fish¹⁹ without any 33 empirical testing. We have challenged this view and hypothesized that elevated CO_2 34 35 would directly affect the olfactory system of fish, given that the olfactory epithelium is in intimate contact with sea water. We propose a novel physiological mechanism by 36 which ocean acidification can alter fish behavior and learning directly via the 37 38 olfactory system, and used the European sea bass as a model to test this hypothesis. 39

40 **Results**

Firstly, we confirmed that the behavior of European sea bass was affected by 41 elevated CO₂ levels as demonstrated in other fish species. Juvenile sea bass were 42 exposed to current (~430 µatm; control) and predicted end of the century levels of 43 CO₂ (~1000 µatm; elevated CO₂) and their behavioral responses to a likely predator 44 odor²⁰ (bile from monkfish, *Lophius piscatorius*; dilution 1:1,000,000) was quantified. 45 Our data demonstrated that sea bass exposed to elevated CO₂ reduced their 46 baseline activity (swimming) by up to 40% compared with control fish (p=0.008, Fig 47 1a). This difference was independent of the duration of exposure (p=0.30). 48 Furthermore, control sea bass reduced their activity by 50% in the presence of the 49 predator odor, whereas sea bass exposed to elevated CO₂ reduced their activity by 50

only 20-27% (P=0.009, Fig. 1b). Both control and elevated CO₂ exposed fish
displayed freezing behavior (not moving for more than 5 seconds at a time) after 2
and 7 days of exposure (Fig. 1a,b). However, at 14 days, fish exposed to elevated
CO₂ spent significantly more time freezing (p=0.043) before and during exposure to
a predator cue (Fig. 1e).

Having established that end-of-century levels of CO₂ in the water result in 56 pronounced alterations of behavior, we tested if exposure to elevated CO₂ at the 57 olfactory epithelium alone was sufficient to reduce the detection of odorants. We 58 59 used electrophysiological recordings from peripheral sensory neurons of the olfactory system, allowing us to isolate peripheral olfactory responses from central 60 brain processes. We measured changes in the activity of the olfactory nerve whilst 61 62 exposing the olfactory epithelium to sea water containing ten different olfactory stimuli dissolved in either control or elevated CO₂ seawater, while fish were 63 maintained under control CO₂ levels. We tested the olfactory nerve response of sea 64 bass to a wide range of odorants: amino acids (L-cysteine, L-serine, L-alanine, L-65 arginine and L-glutamate), as odorants principally mediating food detection²¹; bile 66 acids involved in chemically-mediated interactions between conspecifics and other 67 teleost species (cyprinol sulphate) and potentially predatory shark species (scymnol 68 sulphate)²²; body fluids (intestinal fluid, bile from conspecifics, and alarm cue), potent 69 70 chemical signals that can elicit behavioral responses vital for escape from/awareness of predators or recognition of conspecifics^{23, 24, 25} (see 71 Supplementary materials for a full description of the methods). The amplitude of the 72 73 response indicates the change in magnitude of the nerve activity in response to an odorant, and the detection threshold is defined as the concentration of odorant that 74

4

produced a detectable response (above baseline). Overall, elevated CO₂ reduced

the amplitude of the response for 6 out of the 10 odorants compared to control (Fig. 76 2), and increased the detection threshold (i.e. reduced sensitivity) in 4 out of the 10 77 odorants (Fig. 3), but had no effect on the remainder (i.e. elevated CO₂ did not 78 increase amplitude or sensitivity of the response to any of these odorants). Under 79 elevated CO₂ the responses to L-alanine, L-arginine and L-glutamate, cyprinol 80 sulphate, scymnol sulphate and alarm cue were up to 46% lower than those of 81 82 controls (n=6-11 per odorant per treatment, p=0.027, p=0.040, p=0.028, p=0.011, p=0.012, p=0.018 respectively, Fig. 2). The thresholds of detection for L-cysteine 83 84 (p=0.049), L-alanine (p=0.029) and L-glutamate (p=0.0047), and conspecific bile (p=0.029) were 2 to 5 fold higher in elevated CO₂ (Fig. 3). Therefore, under elevated 85 CO₂ these odorants would need to be present in the water at concentrations up to 5 86 times greater than in current CO₂ conditions in order to be detected by sea bass. 87

The active space of a chemical is defined as the largest volume of water a fish 88 can occupy that still contains a concentration of odorant at or above the olfactory 89 threshold for detection^{25, 26}. This is a useful parameter to help estimate how much 90 closer a fish would need to be (on average) to detect an odor-source under these 91 elevated CO₂ conditions. We assumed a homogeneous distribution of the odorant in 92 the water. Although this assumption may be simplistic for most natural environments 93 (due to the constant movement of water associated with currents, tidal movements, 94 95 etc.), it allows for a good estimate of the average change for most circumstances. The largest reduction in threshold of detection (5 fold) was for glutamate (Fig. 3). We 96 calculated that the active space (i.e. a 3 dimensional volume) for glutamate detection 97 would be reduced by 80%, which would translate into fish having to be 42% closer to 98 the odorant source before detection occurred (i.e. based on the one dimensional 99

radius of the three dimensional active space sphere; Fig. 3 - see SupplementaryInformation for calculation details and assumptions).

Lastly, RNA sequencing was used to elucidate the molecular mechanisms 102 103 underpinning the negative effects of elevated CO₂ on sea bass olfaction. Sea bass were exposed for 2 and 7 days to either control (~450 µatm) or elevated CO₂ (~1000 104 µatm). Global gene transcription was measured in tissue samples taken from the 105 olfactory epithelium (n=6) and the olfactory bulb (n=4) using an Illumina HiSeq 2500 106 platform. De novo reference transcriptomes were constructed for each tissue using 107 the Trinity pipeline²⁷ (see Supplementary Information for method description). 108 Transcript abundances were calculated using RSEM²⁸ and differences in gene 109 transcription were determined using EdgeR²⁹ and a selection of scripts provided by 110 111 Trinity.

Calcium/calmodulin-dependent protein kinase II beta 2 (CAMKII) directly 112 regulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate 113 receptors, known to be involved in synaptic plasticity³⁰. In the olfactory bulb, fish 114 exposed to elevated CO₂ for 2 days showed a significant down-regulation of 115 camk2ga (gene encoding CAMKII) and nptxr (encoding for a protein involved in 116 synaptic plasticity and the clustering of AMPA receptors). This was followed by the 117 downregulation of *gria1b* (homologous to a gene encoding AMPA glutamate 118 receptors), downregulation of map2k2a (gene encoding mitogen activated protein 119 kinase kinase involved in olfactory learning in the olfactory bulb in rats³¹), and the 120 upregulation of *tmub1* (gene encoding a protein involved in the regulation of AMPA 121 receptors at the cell surface) at 7 days. Additionally, genes involved in 122 neurotransmitter re-uptake (slc6a17 and slc1a8) including glutamate were 123 downregulated in the olfactory epithelium in fish exposed to elevated CO₂ for 7 days. 124

125 In the olfactory epithelium there was an upregulation of *slc4a8* (gene encoding the sodium/bicarbonate cotransporter) at 2 days, similar to that observed for long-term 126 adjustments of bicarbonate (HCO_3) transport in the gills of marine fish in response to 127 elevated CO₂³². Four chemosensory G-protein coupled receptor gene families have 128 been identified in teleosts: main olfactory receptors (ORs), trace amine-associated 129 receptors (TAARs), and vomeronasal receptors 1 and 2 (VR1 and VR2)³³ and all of 130 these were well represented in the olfactory epithelium transcriptome 131 (Supplementary Information). In the olfactory epithelium two OR genes (or and 132 133 or142) were significantly down-regulated after 7 days of exposure; however, no OR genes were up-regulated. Interestingly, in the olfactory bulb two additional OR genes 134 (or and or120), likely expressed in the axons of sensory neurons reaching the 135 olfactory bulb, were also downregulated in fish exposed to elevated CO₂ for 7 days. 136 In mammals, the presence of odorant receptor mRNA in the axons of sensory 137 neurons is well established, and these mRNAs are likely involved in the wiring of the 138 olfactory system³⁴. These results suggest that fish exposed to elevated CO₂ did not 139 activate compensatory molecular mechanisms to adjust for the loss of olfactory 140 sensitivity measured using nerve recording, and that the wiring of the olfactory 141 system might be affected by ocean acidification. 142

Genes involved in excitatory neurotransmission such as the nicotinic acetylcholine receptor (*chrna7*) and glutamate receptor (*gria1b*) were downregulated in the olfactory bulb of fish exposed to elevated CO_2 levels for 7 days, while a gene involved in decreasing neuronal excitability (calcium-activated potassium channel, *kcnn3*) was up-regulated in the same tissue after 2 days of exposure. In the olfactory epithelium, fish exposed to elevated CO_2 for 7 days showed down-regulation of excitatory neurotransmission (*scn4ab, cacna2d*), and

neuronal growth and development (*zak* and *efnb2b*). These results indicate

151 mechanisms for decreased excitability of neurons in the olfactory epithelium and

bulb at both time points, and thus, a decrease in olfactory information being

transmitted to higher brain centers.

154 **Discussion**

155 Elevated CO₂ affects the behavior of sea bass

Adult sea bass spawn offshore and the newly-hatched larvae must navigate back to 156 the safety of coastal nursery habitats using their olfactory senses to home in on 157 these sites and to avoid predators³⁵, and this life history strategy is shared by many 158 fish species. This is the most vulnerable stage in the life cycle of sea bass being 159 associated with high mortality from predation³⁵. Here, we report that juvenile sea 160 bass exposed to levels of CO₂ predicted for the end of the century demonstrate 161 impaired behavior in response to a predator cue (Fig. 1). This response is similar to 162 those reported for other fish species studied to date and, importantly, an increased 163 effect was observed with exposure time^{3, 4, 11, 12}. However, in sea bass the baseline 164 activity was lower after exposure to elevated CO_2 (Fig. 1), which is unlike most fish 165 species studied to date (generally higher activity was reported after exposure to 166 elevated CO₂)^{36, 37}. Although a recent study found no effects of elevated CO₂ on the 167 routine swimming behavior of early juvenile sea bass³⁸, this could have been 168 influenced by much higher control CO₂ conditions (585 µatm vs 430 µatm in our 169 study). This higher level of CO₂ (585 µatm) is predicted to be reached during the mid 170 21st century, and behavioral impairments were reported in some species following 171 exposure to this level of CO_2^{39} . In our study, juvenile sea bass exposed to elevated 172 CO_2 also spent more time freezing compared to those exposed to control CO_2 levels; 173

this is consistent with previous findings showing that rockfish exposed to elevated
 CO₂ had elevated levels of anxiety compared to control fish¹¹.

176 Elevated CO₂ has an acute effect on the olfactory sensitivity of sea bass

The decreased behavioral response to the predator odor was accompanied 177 by a decrease in olfactory sensitivity (either via response amplitude or detection 178 threshold) to 8 out 10 odorants tested, indicating that olfaction is generally impaired 179 in sea bass exposed to elevated CO₂. The sensitivity of some odorants was more 180 affected than that of others, suggesting that the quality of the perceived odor might 181 182 be altered in fish exposed to elevated CO₂. This may help to explain the inappropriate (rather than simply inhibited) behavioural responses to complex 183 predator and home-reef odours previously described in the literature^{3, 4}. Furthermore, 184 185 our results are consistent with studies in freshwater pink salmon (Oncorhynchus gorbuscha) and marine shore crabs (Carcinus maenas) exposed to elevated CO₂ 186 showing that olfactory sensitivity is impaired, even after prolonged exposure to 187 elevated CO₂, and can be restored within two hours or less of return to control 188 conditions^{40, 41}, indicating that this effect persists during chronic exposure to elevated 189 CO₂, but is readily reversible. In freshwater fish and marine crabs exposed to 190 elevated CO₂/low pH the loss of response to some odorants, including alarm cue, 191 has been attributed to structural and functional changes of the chemical cues 192 themselves^{19, 41}. This is also a potential explanation for how elevated CO₂ affects 193 odorant-receptor binding in the current study. 194

We estimate that under elevated CO_2 sea bass must be up to 42% closer to the odorant source than in current day conditions to allow detection (Fig. 3). This would increase the risk of predation or decrease the ability to find food, resulting in a direct impact on survival. This is consistent with the observation that coral reef fish

raised in elevated CO₂ show a 9-fold increase in mortality in the wild⁴. The activity of 199 sea bass exposed to elevated CO₂ was significantly reduced (Fig. 1) likely resulting 200 in reduced energetic costs. Importantly, this reduced activity would also further 201 202 reduce their chances of encountering odors in elevated CO₂ conditions. Therefore, if these changes in detection thresholds persist during longer term exposure to 203 elevated CO₂ (as found in freshwater salmon⁴⁰), these could have important 204 ecological consequences at the population level, affecting communication with 205 conspecifics, prey detection and, particularly, predator avoidance. 206

207 Elevated CO₂ affects global gene expression in the olfactory system

Only one recent study has investigated the effect of elevated CO₂ on global 208 gene expression patterns in the brain of fish, and found that in juvenile spiny 209 210 damselfish (Acanthochromis polyacanthus) genes associated with brain glucose, serine and glycine metabolism were differentially expressed in fish exposed to 211 elevated CO₂⁴². Interestingly, in our study both electrophysiology and RNA-Seq 212 213 results indicated that the response to glutamate was most affected by elevated CO₂. We show that in fish exposed to elevated CO₂ genes encoding CAMKII, MAPK 214 kinase and AMPA glutamate receptors were downregulated, and genes associate 215 with AMPA receptor cycling (tmub1 and nptx2) were upregulated. These genes are 216 involved in long term depression (a long-lasting decrease in synaptic strength), a 217 process associated with a decline in learning and memory in higher brain centres³⁰. 218 The expression of genes involved in maintaining neuronal excitability (chrna7, 219 gria1b, scn4ab, cacna2d) also decreased in fish exposed to elevated CO₂. A 220 221 decrease in synaptic plasticity in the olfactory bulb and a decrease in neuronal excitability in the olfactory system suggest that less olfactory information was being 222 sent to higher brain centers. Additionally, OR genes in the olfactory bulb were 223

downregulated in fish exposed to elevated CO_2 . These genes have been shown to be involved in the patterning of the olfactory bulb in mammals, particularly during the development of the olfactory system³⁴. Interestingly, these findings are consistent with impaired learning in responding to a predator odor in larval damselfish (*Pomacentrus amboinensis*) exposed to elevated CO_2^{13} , perhaps due to reduced olfactory information reaching higher brain centers, compromising learning and memory formation.

Novel physiological mechanism to explain how elevated CO_2 affects fish

232 behavior

We propose a novel mechanism based in the olfactory system to explain how 233 elevated CO_2 alters the behavior of fish (Fig. 5). First, we show that elevated CO_2 234 can have a direct effect on the sensitivity of olfactory reception to various odorants in 235 sea bass, likely by reduced affinity of odorant-receptor binding in the olfactory 236 epithelium. Our electrophysiology data show that fewer impulses are sent to the 237 olfactory bulb in response to most odorants, regardless of concentration. This would 238 result in a decrease in the activity of olfactory bulb synapses, detected by a change 239 in the timing and the frequency of calcium cycling in these neurons, a process that 240 can lead to a decrease in synaptic plasticity³⁰. Indeed, gene expression results show 241 that sea bass exposed to elevated CO₂ downregulate genes involved in synaptic 242 243 plasticity and maintaining the excitability of both peripheral olfactory receptor neurons and central olfactory bulb neurons, supporting our hypothesis. Therefore, 244 we propose that under future levels of elevated CO₂ fish may sense less information 245 through their olfactory receptors, and this would be compounded by less peripheral 246 olfactory information being transmitted to higher brain centers. Additionally, we also 247 found decreases in the expression of genes involved in in the wiring of the olfactory 248

system, an important developmental process for juvenile fish. These physiological
and molecular changes are consistent with the altered behavior observed in this
study and others and have strong implications for fitness in the wild.

The mechanism of altered neurotransmitter function previously hypothesized to 252 explain the impairments of sensory-induced behaviors observed in coral reef fish is 253 limited to alterations at the level of the brain⁴³. It proposes that extracellular acid-254 base regulatory changes that fish undergo in response to exposure to elevated CO₂ 255 lead to changes in gradients for HCO₃ and Cl⁻ ions across neuronal cell membranes 256 257 in the brain. In turn these changes are suggested to interfere with the normal functioning of the gamma-aminobutyric acid A (GABA_A) receptor, causing increased 258 excitation rather than inhibition of the nervous system and the observed downstream 259 behavioral impairments^{18, 43}. However, not all fish are good acid-base regulators, and 260 some do not regulate extracellular pH at all when facing elevated CO₂ 261 environments⁴⁴. The mechanism proposed here is independent of any changes in 262 263 blood acid-base chemistry but is instead dependent on the external (seawater) changes in CO_2/H^+ . This raises the possibility that all fish species exposed to 264 elevated CO₂ are potentially susceptible to the direct impairment of peripheral 265 olfactory sensitivity proposed here, whereas the central brain impairment of sensory 266 behavior will principally be relevant to species that are good acid-base regulators. 267 An apparent discrepancy is that in some studies behavioral abnormalities 268 previously shown for fish exposed to ocean acidification are not evident for the first 269 24 hours of exposure⁴. However, these previous observations are based on fish 270 exposed to strong odors, probably well above the threshold of detection^{3, 4, 43}. Thus, 271 even a 50% reduction in the olfactory sensitivity at these high odorant concentrations 272 would not prevent fish from smelling these strong predator odors, giving rise to some 273

form of behavioral response under elevated CO₂ conditions. By contrast, the 274 peripheral mechanism proposed here would impair olfaction following any duration of 275 elevated CO₂ conditions, particularly when odorants are close to their detection 276 277 threshold, a more realistic scenario in a natural environment. Secondly, the behavioral responses documented previously are downstream of the central brain 278 GABA-regulated processes that should only be impaired secondary to acid-base 279 regulation and changes in blood chemistry⁴⁵. It is also important to recognize that the 280 two models (the one proposed here based in the olfactory system and the previously 281 282 proposed impairment of GABA receptor function) are not mutually exclusive. Indeed, it seems likely that they would operate together during exposures lasting longer than 283 24 h, in particular for acid-base regulators, impacting sensory behavior through two 284 285 distinct physiological mechanisms and ultimately impairing fitness.

286 Conclusions

Recent studies, including ours, indicate that behavioral responses persist, or 287 become more pronounced, with prolonged experimental exposure to elevated CO₂⁴, 288 ¹² and in fish that live in naturally high CO_2 environments (near CO_2 seeps)⁴⁶. 289 Additionally, it is not known if the relatively fast change in CO₂ predicted for this 290 century would allow sea bass and other fishes to acclimate or adapt to a high CO₂ 291 world, but one generation is apparently not enough to mitigate the effects of elevated 292 CO_2^{47} . We propose that the impairment of sensory behavior is induced via not one, 293 but two complementary physiological mechanisms, acting on the olfactory system 294 and on the GABA receptor function in the brain. In essence, fish are impacted at two 295 296 distinct levels of the sensory-behavioral system, both at the periphery and the central nervous system affecting their behavior. This suggests that complete adaptation may 297 require phenotypic modification at both of these targets of CO₂ exposure. In turn this 298

- 299 could either increase selection pressure on this sensory pathway or increase the
- 300 time required for selection compared to if there was only one target mechanism, and
- thus complicate predictions about the length of time required for adaptation to occur.
- 302 Ultimately, it is becoming clear that an elevated CO₂ environment has the potential
- 303 for major negative impacts on olfactory-mediated behavior of fish across a wide
- 304 range of habitats and latitudes. This highlights the potential for ecologically
- 305 significant population-level impacts on fishes, and perhaps other marine fauna,
- including on economically and ecologically important species.

Funding

This study was supported by grants from Association of European Marine Biology Laboratories [227799], the Natural Environment Research Council [RWW; NE/H017402/1], the Biotechnology and Biological Sciences Research Council [RWW; BB/D005108/1], Fundação para a Ciência e Tecnologia (Portuguese Science Ministry) [UID/Multi/04326/2013] and a Royal Society Newton International Fellowship to CSP. CSP is also a beneficiary of a Starting Grant from AXA.

Author contributions

CSP and RWW designed the behavior experiments. CSP performed the experiments and analyzed those data; CSP, PCH and RWW designed the electrophysiology study, CSP and PCH performed the electrophysiology experiments. CSP, TMUW, RvA, and EMS designed the transcriptomics experiments, CSP performed the experiments and constructed the libraries. CSP performed the bioinformatics analysis and interpreted the results with help from TMUW, RvA, and EMS; all authors contributed to and provided feedback on various drafts of the paper.

Acknowledgements

The authors are grateful to Drs Lee Hagey and Alan Hofmann (UCSD) for their kind gift of cyprinol sulphate and scymnol sulphate. We would also like to thank the Aquatic Research Centre (ARC) staff at the University of Exeter for their assistance with fish husbandry and experimental setup, Bas Verbruggen for helpful bioinformatics advice, and Louisa Salisbury for help with tissue sampling.

References

- 1. Velez Z, Hubbard P, Welham K, Hardege J, Barata E, Canário AM. Identification, release and olfactory detection of bile salts in the intestinal fluid of the Senegalese sole (*Solea senegalensis*). *J Comp Physiol A* 2009, **195**(7): 691-698.
- 2. Yacoob SY, Browman HI. Olfactory and gustatory sensitivity to some feedrelated chemicals in the Atlantic halibut (*Hippoglossus hippoglossus*). *Aquaculture* 2007, **263**(1–4): 303-309.
- 3. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, *et al.* Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. *Proc Natl Acad Sci USA* 2009, **106**(6): 1848-1852.
- 4. Munday PL, Dixson DL, McCormick MI, Meekan M, Ferrari MCO, Chivers DP. Replenishment of fish populations is threatened by ocean acidification. *Proc Natl Acad Sci USA* 2010, **107**(29): 12930-12934.
- Yambe H, Kitamura S, Kamio M, Yamada M, Matsunaga S, Fusetani N, et al. L-Kynurenine, an amino acid identified as a sex pheromone in the urine of ovulated female masu salmon. Proc Natl Acad of Sci 2006, 103(42): 15370-15374.
- 6. Arvedlund M, McCormick MI, Fautin DG, Bildsøe M. Host recognition and possible imprinting in the anemonefish *Amphiprion melanopus* (Pisces: Pomacentridae). *Mar Ecol Prog Ser* 1999, **188:** 207-218.
- 7. Arvedlund M, Takemura A. The importance of chemical environmental cues for juvenile *Lethrinus nebulosus* Forsskål (Lethrinidae, Teleostei) when settling into their first benthic habitat. *J Exp Mar Biol Ecol* 2006, **338**(1): 112-122.
- 8. Atema J, Kingsford MJ, Gerlach G. Larval reef fish could use odour for detection, retention and orientation to reefs. *Mar Ecol Prog Ser* 2002, **241:** 151-160.
- 9. Gerlach G, Atema J, Kingsford MJ, Black KP, Miller-Sims V. Smelling home can prevent dispersal of reef fish larvae. *Proc Natl Acad of Sci* 2007, **104**(3): 858-863.
- 10. Vrieze LA, Sorensen PW. Laboratory assessment of the role of a larval pheromone and natural stream odor in spawning stream localization by

migratory sea lamprey (*Petromyzon marinus*). Can J Fish Aquat Sci 2001, **58**(12): 2374-2385.

- 11. Hamilton TJ, Holcombe A, Tresguerres M. CO₂-induced ocean acidification increases anxiety in Rockfish via alteration of GABA_A receptor functioning. *Proc R Soc Lond B Biol Sci* 2014, **281**(1775): 20132509.
- 12. Jutfelt F, Bresolin de Souza K, Vuylsteke A, Sturve J. Behavioural disturbances in a temperate fish exposed to sustained high-CO₂ levels. *PLoS ONE* 2013, **8**(6): e65825.
- 13. Ferrari MCO, Manassa RP, Dixson DL, Munday PL, McCormick MI, Meekan MG, *et al.* Effects of ocean acidification on learning in coral reef fishes. *PLoS ONE* 2012, **7**(2): e31478.
- 14. Dixson DL, Jennings AR, Atema J, Munday PL. Odor tracking in sharks is reduced under future ocean acidification conditions. *Global Change Biol* 2014: 1454–1462.
- 15. Green L, Jutfelt F. Elevated carbon dioxide alters the plasma composition and behaviour of a shark. *Biol Lett* 2014, **10**(9): 20140538.
- 16. Chivers DP, McCormick MI, Nilsson GE, Munday PL, Watson S-A, Meekan MG, *et al.* Impaired learning of predators and lower prey survival under elevated CO₂: a consequence of neurotransmitter interference. *Global Change Biol* 2013, **20**(2): 515-522.
- 17. Watson S-A, Lefevre S, McCormick MI, Domenici P, Nilsson GE, Munday PL. Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. *Proc R Soc B Biol Sci* 2014, **281**(1774): 20132377.
- 18. Heuer RM, Welch MJ, Rummer JL, Munday PL, Grosell M. Altered brain ion gradients following compensation for elevated CO₂ are linked to behavioural alterations in a coral reef fish. *Scientific Reports* 2016, **6**: 33216.
- 19. Leduc AOHC, Munday PL, Brown GE, Ferrari MCO. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis. *Philos Trans R Soc Lond B Biol Sci* 2013, **368**(1627).
- 20. Fariña AC, Azevedo M, Landa J, Duarte R, Sampedro P, Costas G, *et al. Lophius* in the world: a synthesis on the common features and life strategies. *ICES Journal of Marine Science: Journal du Conseil* 2008, **65**(7): 1272-1280.

- 21. Hara T. The diversity of chemical stimulation in fish olfaction and gustation. *Rev Fish Biol Fisheries* 1994, **4**(1): 1-35.
- 22. Buchinger TJ, Li W, Johnson NS. Bile salts as semiochemicals in fish. *Chem Senses* 2014: bju039v031.
- 23. Leduc AOHC, Roh E, Macnaughton CJ, Benz F, Rosenfeld J, Brown GE. Ambient pH and the response to chemical alarm cues in juvenile Atlantic salmon: mechanisms of reduced behavioral responses. *Trans Am Fish Soc* 2010, **139**(1): 117-128.
- 24. Lönnstedt OM, McCormick MI. Chemical alarm cues inform prey of predation threat: the importance of ontogeny and concentration in a coral reef fish. *Anim Behav* 2011, **82**(2): 213-218.
- 25. Frade P, Hubbard PC, Barata EN, Canario AVM. Olfactory sensitivity of the Mozambique tilapia to conspecific odours. *J Fish Biol* 2002, **61**(5): 1239-1254.
- 26. Hubbard PC, Barata EN, Canário AVM. Olfactory Sensitivity of the gilthead seabream (*Sparus auratus* L) to conspecific body fluids. *J Chem Ecol* 2003, **29**(11): 2481-2498.
- 27. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, *et al.* De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. *Nat Protocols* 2013, **8**(8): 1494-1512.
- 28. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics* 2011, **12**(1): 323.
- 29. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 2010, **26**(1): 139-140.
- 30. Malenka RC, Nicoll, A. R. Long-Term Potentiation--A Decade of Progress? *Science* 1999, **285**(5435): 1870-1874.
- 31. Zhang JJ, Okutani F, Inoue S, Kaba H. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway leading to cyclic AMP response element-binding protein phosphorylation is required for the long-term facilitation process of aversive olfactory learning in young rats. *Neuroscience* 2003, **121**(1): 9-16.

- 32. Deigweiher K, Koschnick N, Pörtner H-O, Lucassen M. Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia. *American Journal of Physiology Regulatory, Integrative and Comparative Physiology* 2008, **295**(5): R1660-R1670.
- 33. Hashiguchi Y, Furuta Y, Nishida M. Evolutionary patterns and selective pressures of odorant/pheromone receptor gene families in teleost fishes. *PLoS ONE* 2008, **3**(12): e4083.
- 34. Dubacq C, Fouquet C, Trembleau A. Making scent of the presence and local translation of odorant receptor mRNAs in olfactory axons. *Developmental Neurobiology* 2014, **74**(3): 259-268.
- Benhaïm D, Péan S, Lucas G, Blanc N, Chatain B, Bégout M-L. Early life behavioural differences in wild caught and domesticated sea bass (*Dicentrarchus labrax*). *Applied Animal Behaviour Science* 2012, **141**(1–2): 79-90.
- 36. Ferrari MCO, Dixson DL, Munday PL, McCormick MI, Meekan MG, Sih A, *et al.* Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. *Global Change Biol* 2012, **17**(9): 2980-2986.
- 37. Cripps IL, Munday PL, McCormick MI. Ocean acidification affects prey detection by a dredatory reef fish. *PLoS ONE* 2011, **6**(7): e22736.
- 38. Duteil M, Pope EC, Pérez-Escudero A, de Polavieja GG, Fürtbauer I, Brown MR, *et al.* European sea bass show behavioural resilience to near-future ocean acidification. *Royal Society Open Science* 2016, **3**(11).
- Munday PL, Pratchett MS, Dixson DL, Donelson JM, Endo GGK, Reynolds AD, et al. Elevated CO₂ affects the behavior of an ecologically and economically important coral reef fish. *Marine Biology* 2013, **160**(8): 2137-2144.
- Ou M, Hamilton TJ, Eom J, Lyall EM, Gallup J, Jiang A, et al. Responses of pink salmon to CO₂-induced aquatic acidification. *Nat Clim Change* 2015, 5(10): 950-955.
- 41. Roggatz CC, Lorch M, Hardege JD, Benoit DM. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. *Glob Chang Biol* 2016.

- 42. Schunter C, Welch MJ, Ryu T, Zhang H, Berumen ML, Nilsson GE, *et al.* Molecular signatures of transgenerational response to ocean acidification in a species of reef fish. *Nature Clim Change* 2016, **6**(11): 1014-1018.
- 43. Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sorensen C, Watson S-A, et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. *Nat Clim Change* 2012, **2**(3): 201-204.
- 44. Brauner CJ, Wang T, Wang Y, Richards JG, Gonzalez RJ, Bernier NJ, *et al.* Limited extracellular but complete intracellular acid-base regulation during short-term environmental hypercapnia in the armoured catfish, *Liposarcus pardalis. J Exp Biol* 2004, **207**(19): 3381-3390.
- 45. Esbaugh A, Heuer R, Grosell M. Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, *Opsanus beta*. *J Comp Physiol B* 2012, **182**(7): 921-934.
- 46. Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE. Behavioural impairment in reef fishes caused by ocean acidification at CO₂ seeps. *Nat Clim Change* 2014, **4**: 487-492.
- 47. Welch MJ, Watson S-A, Welsh JQ, McCormick MI, Munday PL. Effects of elevated CO₂ on fish behaviour undiminished by transgenerational acclimation. *Nat Clim Change* 2014, **4:** 1086-1089.

Figures

Figure 1. Behavior responses of European seabass (*Dicentrarchus labrax*) to a 5 min exposure to a predator odor (monkfish bile) after exposure to control (~420 µatm) or elevated CO₂ (~950 µatm) for 2, 7, and 14 days. a, baseline activity after 2, 7, and 14 days exposure to control and elevated CO₂. b, change in activity before and during the first minute of exposure to predator odor (dilution 1:1,000,000). Period of time spent freezing before and during 5 min exposure to predator odor after 2 (c), 7 (d), and 14 (e) days of exposure. Values are means ± s.e.m. Asterisks indicate statistically significant differences compared to control data obtained before exposure to predator odor. Crosses indicate statistical significance between control and elevated CO₂ treatments (p < 0.05).

Figure 2. Elevated CO₂/H⁺ decreases the olfactory sensitivity of European sea bass to amino acids, bile acids and body fluids. a, L-serine (N=6). b, L-cysteine (N=6). c, L-alanine (N=8). d, L-arginine (N=6). e, L-glutamate (N=6). f, cyprinol sulphate (N=10). g, scymnol sulphate (N=10). h, intestinal fluid dilutions (N=6). i, conspecific bile dilutions (N=6). j, alarm cue dilutions (N=8). Responses measured under control (blue) (pH 8.15 ± 0.01, 476±14 µatm) and elevated CO₂ (orange) (pH 7.82 ± 0.01, 1122±19 µatm). Values are expressed as % of the response to 10⁻⁴ M L-cysteine and represented as mean ± s.e.m. Different letters indicate significant differences between the response to different concentrations of odorants (p < 0.01). † denotes differences between treatments (p < 0.05). See online Supplementary Information for raw traces of these responses.

Figure 3. Acute exposure of European seabass to elevated CO_2 (~1000 µatm) decreases the amplitude of the olfactory response and increases the detection threshold of several odorants tested by up to 5 fold. Elevated CO_2 reduces the active space (represented by the blue sphere) of an odor by up to 80% (represented by the yellow dashed line) and the distance to a detectable odor source (arrow) by up to 42% in European sea bass. This suggests potentially drastic consequences on their ecology and survival (see Supplementary materials for calculations and assumptions, and Fig. 2 for amplitude response curves). Asterisks and crosses indicate statistically significant differences from the control group (p < 0.05) in detection threshold and amplitude, respectively. NS, not significant.

Figure 4. Differential regulation of genes from the olfactory epithelium and olfactory lobe of European sea bass exposed to control and high CO₂ for 2 and 7 days. Genes involved in neuronal growth (*efrn2b***) and development (***zak***) were significantly down-regulated in the olfactory epithelium. Additionally genes encoding for ion channels (***scn4***,** *cacna2, chrna7 and kcnn3***) responsible for maintaining cell excitability were also down-regulated in both the olfactory epithelium and the bulb. In the olfactory bulb there was also down regulation of glutamate ionotropic receptors (AMPA), mitogen activated protein kinase kinase (map2k2) and CAMKII indicative of long term depression (process involved in decreased synaptic plasticity). Moreover, olfactory receptor genes were downregulated in both the olfactory epithelium and the bulb, indicating no compensatory mechanism for loss of olfactory function and changes in the wiring of the olfactory system in juvenile sea bass. Arrows represent direct pathways of activation, and T bars represent direct pathways of repression. Note that the axons of the olfactory sensory neurons in the epithelium synapse with neurons in the olfactory bulb.**

Figure 5. Proposed mechanism of action of CO_2 -induced ocean acidification on fish behavior via the olfactory pathway. Ocean acidification has an acute effect on the binding of odorants to their receptors, decreasing both detection threshold and amplitude of the response. Long term exposure to high CO_2 decreases cell and neuron excitability, indicating less olfactory information is being transmitted from the olfactory epithelium to higher brain centers. In combination with a decrease in synaptic plasticity, this altered gene expression can affect behavior and learning in fish.