407 research outputs found

    Impact of five years of peer-mediated interventions on sexual behavior and sexually transmitted infections among female sex workers in Mombasa, Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since 2000, peer-mediated interventions among female sex workers (FSW) in Mombasa Kenya have promoted behavioural change through improving knowledge, attitudes and awareness of HIV serostatus, and aimed to prevent HIV and other sexually transmitted infection (STI) by facilitating early STI treatment. Impact of these interventions was evaluated among those who attended peer education and at the FSW population level.</p> <p>Methods</p> <p>A pre-intervention survey in 2000, recruited 503 FSW using snowball sampling. Thereafter, peer educators provided STI/HIV education, condoms, and facilitated HIV testing, treatment and care services. In 2005, data were collected using identical survey methods, allowing comparison with historical controls, and between FSW who had or had not received peer interventions.</p> <p>Results</p> <p>Over five years, sex work became predominately a full-time activity, with increased mean sexual partners (2.8 versus 4.9/week; <it>P </it>< 0.001). Consistent condom use with clients increased from 28.8% (145/503) to 70.4% (356/506; <it>P </it>< 0.001) as well as the likelihood of refusing clients who were unwilling to use condoms (OR = 4.9, 95%CI = 3.7–6.6). In 2005, FSW who received peer interventions (28.7%, 145/506), had more consistent condom use with clients compared with unexposed FSW (86.2% versus 64.0%; AOR = 3.6, 95%CI = 2.1–6.1). These differences were larger among FSW with greater peer-intervention exposure. HIV prevalence was 25% (17/69) in FSW attending ≥ 4 peer-education sessions, compared with 34% (25/73) in those attending 1–3 sessions (P = 0.21). Overall HIV prevalence was 30.6 (151/493) in 2000 and 33.3% (166/498) in 2005 (<it>P </it>= 0.36).</p> <p>Conclusion</p> <p>Peer-mediated interventions were associated with an increase in protected sex. Though peer-mediated interventions remain important, higher coverage is needed and more efficacious interventions to reduce overall vulnerability and risk.</p

    Gut Microbiota, Probiotics and Diabetes

    Get PDF
    Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic β cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes

    Critical mutation rate has an exponential dependence on population size for eukaryotic-length genomes with crossover

    Get PDF
    The critical mutation rate (CMR) determines the shift between survival-of-the-fittest and survival of individuals with greater mutational robustness (“flattest”). We identify an inverse relationship between CMR and sequence length in an in silico system with a two-peak fitness landscape; CMR decreases to no more than five orders of magnitude above estimates of eukaryotic per base mutation rate. We confirm the CMR reduces exponentially at low population sizes, irrespective of peak radius and distance, and increases with the number of genetic crossovers. We also identify an inverse relationship between CMR and the number of genes, confirming that, for a similar number of genes to that for the plant Arabidopsis thaliana (25,000), the CMR is close to its known wild-type mutation rate; mutation rates for additional organisms were also found to be within one order of magnitude of the CMR. This is the first time such a simulation model has been assigned input and produced output within range for a given biological organism. The decrease in CMR with population size previously observed is maintained; there is potential for the model to influence understanding of populations undergoing bottleneck, stress, and conservation strategy for populations near extinction

    Impaired alanine transport or exposure to d-cycloserine increases the susceptibility of MRSA to β-lactam antibiotics

    Get PDF
    Prolonging the clinical effectiveness of β-lactams, which remain first-line antibiotics for many infections, is an important part of efforts to address antimicrobial resistance. We report here that inactivation of the predicted d-cycloserine (DCS) transporter gene cycA re-sensitized MRSA to β-lactam antibiotics. The cycA mutation also resulted in hyper-susceptibility to DCS, an alanine analogue antibiotic that inhibits alanine racemase and d-alanine ligase required for d-alanine incorporation into cell wall peptidoglycan (PG). Alanine transport was impaired in the cycA mutant and this correlated with increased susceptibility to oxacillin and DCS. The cycA mutation or exposure to DCS were both associated with the accumulation of muropeptides with tripeptide stems lacking the terminal d-ala-d-ala and reduced PG crosslinking, prompting us to investigate synergism between β-lactams and DCS. DCS re-sensitised MRSA to β-lactams in vitro and significantly enhanced MRSA eradication by oxacillin in a mouse bacteraemia model. These findings reveal alanine transport as a new therapeutic target to enhance the susceptibility of MRSA to β-lactam antibiotics.</jats:p

    Identification and prioritization of critical success factors in faith-based and non-faith-based organizations’ humanitarian supply chain

    Get PDF
    In the last few decades, an exponential increase in the number of disasters, and their complexity has been reported, which ultimately put much pressure on relief organizations. These organizations cannot usually respond to the disaster on their own, and therefore, all actors involved in relief efforts should have end-to-end synchronization in order to provide relief effectively and efficiently. Consequently, to smoothen the flow of relief operation, a shared understanding of critical success factors in humanitarian supply chain serves as a pre-requisite for successful relief operation. Therefore, any member of the humanitarian supply chain might disrupt this synchronization by neglecting one or several of these critical success factors. However, in this study, we try to investigate how faith-based and non-faith-based relief organizations treat these critical success factors. Moreover, we also try to identify any differences between Islamic and Christian relief organizations in identifying and prioritizing these factors. To achieve the objective of this study, we used a two-stage approach; in the first stage, we collected the critical success factors from existing humanitarian literature. Whereas, in the second stage, using an online questionnaire, we collected data on the importance of selected factors from humanitarian relief organizations from around the world in collaboration with World Association of Non-Governmental Organizations (WANGO). Later, responses were analyzed to answer the research questions using non-parametric Binomial and Wilcoxon Rank-Sum tests. Test results indicate that for RQ1, two but all factors are significant for successful relief operation. For RQ2, we found significant differences for some CSF among faith-based and non-faith-based relief organizations. Similarly for RQ3, we found significant differences for some CSF among Islamic and Christian relief organizations

    Molecular composition of the peri-islet basement membrane in NOD mice: a barrier against destructive insulitis

    Get PDF
    Aims/hypothesisThis study examined whether the capsule which encases islets of Langerhans in the NOD mouse pancreas represents a specialised extracellular matrix (ECM) or basement membrane that protects islets from autoimmune attack.MethodsImmunofluorescence microscopy using a panel of antibodies to collagens type IV, laminins, nidogens and perlecan was performed to localise matrix components in NOD mouse pancreas before diabetes onset, at onset of diabetes and after clinical diabetes was established (2-8.5 weeks post-onset).ResultsPerlecan, a heparan sulphate proteoglycan that is characteristic of basement membranes and has not previously been investigated in islets, was localised in the peri-islet capsule and surrounding intra-islet capillaries. Other components present in the peri-islet capsule included laminin chains alpha2, beta1 and gamma1, collagen type IV alpha1 and alpha2, and nidogen 1 and 2. Collagen type IV alpha3-alpha6 were not detected. These findings confirm that the peri-islet capsule represents a specialised ECM or conventional basement membrane. The islet basement membrane was destroyed in islets where intra-islet infiltration of leucocytes marked the progression from non-destructive to destructive insulitis. No changes in basement membrane composition were observed before leucocyte infiltration.Conclusions/interpretationThese findings suggest that the islet basement membrane functions as a physical barrier to leucocyte migration into islets and that degradation of the islet basement membrane marks the onset of destructive autoimmune insulitis and diabetes development in NOD mice. The components of the islet basement membrane that we identified predict that specialised degradative enzymes are likely to function in autoimmune islet damage.H. F. Irving-Rodgers, A. F. Ziolkowski, C. R. Parish, Y. Sado, Y. Ninomiya, C. J. Simeonovic, R. J. Rodger

    Novel Coronin7 interactions with Cdc42 and N-WASP regulate actin organization and Golgi morphology

    Get PDF
    YesThe contribution of the actin cytoskeleton to the unique architecture of the Golgi complex is manifold. An important player in this process is Coronin7 (CRN7), a Golgi-resident protein that stabilizes F-actin assembly at the trans-Golgi network (TGN) thereby facilitating anterograde trafficking. Here, we establish that CRN7-mediated association of F-actin with the Golgi apparatus is distinctly modulated via the small Rho GTPase Cdc42 and N-WASP. We identify N-WASP as a novel interaction partner of CRN7 and demonstrate that CRN7 restricts spurious F-actin reorganizations by repressing N-WASP ‘hyperactivity’ upon constitutive Cdc42 activation. Loss of CRN7 leads to increased cellular F-actin content and causes a concomitant disruption of the Golgi structure. CRN7 harbours a Cdc42- and Rac-interactive binding (CRIB) motif in its tandem β-propellers and binds selectively to GDP-bound Cdc42N17 mutant. We speculate that CRN7 can act as a cofactor for active Cdc42 generation. Mutation of CRIB motif residues that abrogate Cdc42 binding to CRN7 also fail to rescue the cellular defects in fibroblasts derived from CRN7 KO mice. Cdc42N17 overexpression partially rescued the KO phenotypes whereas N-WASP overexpression failed to do so. We conclude that CRN7 spatiotemporally influences F-actin organization and Golgi integrity in a Cdc42- and N-WASP-dependent manner.This work was supported by SFB 670 and DFG NO 113/22. K.B. was supported by a fellowship from the NRW International Graduate School “From Embryo to Old Age: the Cell Biology and Genetics of Health and Disease” (IGSDHD), Cologne
    corecore