411 research outputs found

    Transcriptional Regulation of an Evolutionary Conserved Intergenic Region of CDT2-INTS7

    Get PDF
    In the mammalian genome, a substantial number of gene pairs (approximately 10%) are arranged head-to-head on opposite strands within 1,000 base pairs, and separated by a bidirectional promoter(s) that generally drives the co-expression of both genes and results in functional coupling. The significance of unique genomic configuration remains elusive.Here we report on the identification of an intergenic region of non-homologous genes, CDT2, a regulator of DNA replication, and an integrator complex subunit 7 (INTS7), an interactor of the largest subunit of RNA polymerase II. The CDT2-INTS7 intergenic region is 246 and 245 base pairs long in human and mouse respectively and is evolutionary well-conserved among several mammalian species. By measuring the luciferase activity in A549 cells, the intergenic human sequence was shown to be able to drive the reporter gene expression in either direction and notably, among transcription factors E2F, E2F1 approximately E2F4, but not E2F5 and E2F6, this sequence clearly up-regulated the reporter gene expression exclusively in the direction of the CDT2 gene. In contrast, B-Myb, c-Myb, and p53 down-regulated the reporter gene expression in the transcriptional direction of the INTS7 gene. Overexpression of E2F1 by adenoviral-mediated gene transfer resulted in an increased CDT2, but not INTS7, mRNA level. Real-time polymerase transcription (RT-PCR) analyses of the expression pattern for CDT2 and INTS7 mRNA in human adult and fetal tissues and cell lines revealed that transcription of these two genes are asymmetrically regulated. Moreover, the abundance of mRNA between mouse and rat tissues was similar, but these patterns were quite different from the results obtained from human tissues.These findings add a unique example and help to understand the mechanistic insights into the regulation of gene expression through an evolutionary conserved intergenic region of the mammalian genome

    Thermoelectric properties of tetrathiotetracene iodide crystals: modeling and experiment

    Get PDF
    A more complete physical model for nanostructured crystals of tetrathiotetracene-iodide that takes into account the interaction of carriers with the neighboring one-dimensional (1D) conductive chains and also the scattering on impurities and defects is presented. For simplicity, the 2D approximation is applied. It is shown that this model describes very well the temperature dependencies of electrical conductivity in the temperature interval between 180 and 300 K, and of the Seebeck coefficient between 50 and 300 K, the highest temperature for which the measurements were reported. For lower temperatures, it is necessary to also consider the fluctuations of dielectric phase that appear before the metal–dielectric transition. It is found that the predictions made in the 1D approximation are valid only if the crystal purity is not very high, and the electrical conductivity is limited up to ∼3.5×106Ω−1m−1 and the thermoelectric figure of merit up to ZT∼4

    Visualizing peripheral nerve regeneration by whole mount staining.

    Get PDF
    Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these events, axons must regrow through the distal part of the nerve, re-innervate and finally are re-myelinated by Schwann cells. For nerve crush injuries (axonotmesis), in which the integrity of the nerve is maintained, repair may be relatively effective whereas for nerve transection (neurotmesis) repair will likely be very poor as few axons may be able to cross between the two parts of the severed nerve, across the newly generated nerve bridge, to enter the distal stump and regenerate. Analysing axon growth and the cell-cell interactions that occur following both nerve crush and cut injuries has largely been carried out by staining sections of nerve tissue, but this has the obvious disadvantage that it is not possible to follow the paths of regenerating axons in three dimensions within the nerve trunk or nerve bridge. To try and solve this problem, we describe the development and use of a novel whole mount staining protocol that allows the analysis of axonal regeneration, Schwann cell-axon interaction and re-vascularisation of the repairing nerve following nerve cut and crush injuries

    Performance benchmarks for a next generation numerical dynamo model

    Get PDF
    Numerical simulations of the geodynamo have successfully represented many observable characteristics of the geomagnetic field, yielding insight into the fundamental processes that generate magnetic fields in the Earth's core. Because of limited spatial resolution, however, the diffusivities in numerical dynamo models are much larger than those in the Earth's core, and consequently, questions remain about how realistic these models are. The typical strategy used to address this issue has been to continue to increase the resolution of these quasi-laminar models with increasing computational resources, thus pushing them toward more realistic parameter regimes. We assess which methods are most promising for the next generation of supercomputers, which will offer access to O(106) processor cores for large problems. Here we report performance and accuracy benchmarks from 15 dynamo codes that employ a range of numerical and parallelization methods. Computational performance is assessed on the basis of weak and strong scaling behavior up to 16,384 processor cores. Extrapolations of our weak-scaling results indicate that dynamo codes that employ two-dimensional or three-dimensional domain decompositions can perform efficiently on up to ∼106 processor cores, paving the way for more realistic simulations in the next model generation

    Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85

    Get PDF
    Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane

    Cholesterol Depletion in Adipocytes Causes Caveolae Collapse Concomitant with Proteosomal Degradation of Cavin-2 in a Switch-Like Fashion

    Get PDF
    Caveolae, little caves of cell surfaces, are enriched in cholesterol, a certain level of which is required for their structural integrity. Here we show in adipocytes that cavin-2, a peripheral membrane protein and one of 3 cavin isoforms present in caveolae from non-muscle tissue, is degraded upon cholesterol depletion in a rapid fashion resulting in collapse of caveolae. We exposed 3T3-L1 adipocytes to the cholesterol depleting agent methyl-β-cyclodextrin, which results in a sudden and extensive degradation of cavin-2 by the proteasome and a concomitant movement of cavin-1 from the plasma membrane to the cytosol along with loss of caveolae. The recovery of cavin-2 at the plasma membrane is cholesterol-dependent and is required for the return of cavin-1 from the cytosol to the cell surface and caveolae restoration. Expression of shRNA directed against cavin-2 also results in a cytosolic distribution of cavin-1 and loss of caveolae. Taken together, these data demonstrate that cavin-2 functions as a cholesterol responsive component of caveolae that is required for cavin-1 localization to the plasma membrane, and caveolae structural integrity

    A 3′-Untranslated Region (3′UTR) Induces Organ Adhesion by Regulating miR-199a* Functions

    Get PDF
    Mature microRNAs (miRNAs) are single-stranded RNAs of 18–24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3′UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3′UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3′UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3′UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3′UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3′UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3′UTR may be an approach in the development of gene therapy
    • …
    corecore