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Thermoelectric Properties of Tetrathiotetracene Iodide Crystals: 
Modeling and Experiment  

 
Anatolie CASIAN and Ionel SANDULEAC 

Department of Computers, Informatics and Microelectronics,  
Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, Rep. of Moldova 

 
A more complete physical model for nanostructured crystals of tetrathiotetracene-iodide that 
takes into account the interaction of carriers with the neighboring one-dimensional (1D) 
conductive chains and also the scattering on impurities and defects is presented. For simplicity 
the 2D approximation is applied. It is shown that this model describes very well the temperature 
dependencies of electrical conductivity in the temperature interval between 180 and 300 K and 
of Seebeck coefficient between 50 and 300 K, the highest temperature for which the 
measurements were reported. For lower temperatures it is needed to also consider the 
fluctuations of dielectric phase which appear before the metal-dielectric transition. It is found 
that the predictions made in 1D approximation are valid, if the crystal purity is not very high, the 
electrical conductivity is limited up to ~ 3.5106 -1m-1 and the thermoelectric figure of merit up 
to ZT ~ 4.  
 
Key words: Thermoelectric, organic crystal, tetrathiotetracene-iodide, Seebeck coefficient, 
thermal conductivity, thermoelectric figure of merit. 
 

INTRODUCTION 
 

Organic materials attract more and more attention for 
thermoelectric applications as materials with much more 
diverse properties and less expensive in comparison with 
the known inorganic ones. Besides, organic materials 
usually have a very low thermal conductivity that is 
favorable for the improvement of thermoelectric 
efficiency. In poly(3,4-ethylenedioxy-thiophene) (PEDOT) 
a value of the thermoelectric figure of merit ZT = 0.25 has 
been measured [1] and ZT ~ 1 is predicted in this class of 
materials [2]. Reported in [1] data were analyzed in [3] and 
it was shown that the increase in the power factor in 
PEDOT is due mainly to the increase of ionized impurity 
scattering over the lattice scattering, leading to the increase 
of the thermopower. The peak power factor occurs for 
carrier density of ~ 1 × 1026 m−3 higher than in inorganic 
thermoelectric materials and mobility of ~ 5 × 10−4 m2/V s. 
ZT was also enhanced due to low thermal conductivity of 
PEDOT ~ 0.37 W/m K. By minimizing the total dopant 
volume and increasing the ionization fraction, ZT = 0.42 at 
room temperature was achieved [4] in PEDOT:PSS.  

Both n-type and p-type organic thermoelectric materials 
with ZT values of 0.1 to 0.2 around 400 K were developed in 
[5]. A thermoelectric module containing 35 n-p single couples 
was fabricated which demonstrates an output power of 750 
ȝW, the highest for organic materials reported to this date. 
Prospects for polymer-based thermoelectric materials are 
discussed in [6].   

The iodine-doped pentacene thin films can be 
potential candidates for good organic thermoelectric 
materials [7]. It is expected that the nanocomposite 
approach of organic and inorganic components could 
create new efficient thermoelectric materials [8-10]. And 
really, the highest value of ZT = 0.57 at room temperature 
was measured in phenyl acetylene-capped silicon nano 
particles [11]. This result is obtained due to relatively high 
Seebeck coefficient S = 3.2103 V/K and very low 

thermal conductivity  = 0.1 Wm-1K-1. For the description 
of thermoelectric transport in organic materials different 
theoretical models have been developed [12-15].  

The quasi-one-dimensional (Q1D) organic crystals 
attract special attention. Such crystals join together the 
thermoelectric advantages of multi component systems 
with more diverse internal interactions and of low 
dimensional ones with increased electronic density of 
states. In molecular nanowires of conducting polymers 
values of ZT ~ 15 and of thermoelectric power factor ~ 500 
W/cmK at room temperature were predicted [16]. Such 
predictions are very important, because in this paper the 
charge and energy transport is described in the hopping 
model which is applicable in the case of polymers, but 
usually gives smaller mobility than the band model.  

Still higher values of ZT were predicted by us in Q1D 
charge transfer organic crystals, if the crystal purity is 
sufficiently high [17]. However, the above predictions 
were made on the base of a simplified strictly one-
dimensional crystal model. From experimental data it is 
known that in Q1D crystals the electrical conductivity  
along the molecular chains is almost by three orders of 
magnitude higher than in the direction transversal to 
chains. Although from this fact it follows that the 
interaction between the conductive molecular chains is 
weak, it is absolutely necessary to estimate the effect of 
interchain interaction and the restrictions on thermoelectric 
efficiency that this interaction involves.    

The aim of the paper is to present a more complete 
physical model for highly conducting organic 
nanostructured crystals of tetrathiotetracene-iodide, 
TTT2I3, as thermoelectric material. The carrier interaction 
with the neighboring 1D conductive chains and also the 
scattering on neutral impurity and thermally activated 
structural defects are taken into account. The model 
becomes rather cumbersome, therefore for simplicity the 
2D approximation is applied. It is shown that the 
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predictions made in 1D approximation are valid only, if the 
crystal purity is not very high and  is limited to ~ 3.5106 
-1m-1 and ZT ~ 4. In this case the scattering on impurities 
already limits the carriers’ mobility. If the crystal purity is 
higher and, respectively,  achieves higher values than the 
ones mentioned above, it is necessary to take into account 
the interchain interaction, because this interaction begins to 
limit the carriers’ mobility.  

 
 TTT2I3 CRYSTALS IN 2D APROXIMATION 
 
The structure of Q1D organic crystals of 

tetrathiotetracene–iodide, TTT2I3, has been briefly 
described in [18]. The crystals have needle shape and are 
formed of segregate stacks or chains of planar TTT 
molecules and 

3I ions. Only TTT chains are conductive, 
due to large overlap of TTT -orbitals along the chains. 
The overlap of orbitals between neighboring TTT chains is 
very small. Therefore the conduction mechanism along 
TTT chains is band-like and between the chains is of 
hopping type. Respectively, the electrical conductivity 
along the molecular chains is almost by three orders of 
magnitude higher than in the transversal direction to the 
chains. Due to this fact, earlier [17-18] we have neglected 
the possibility for a carrier to pass from one conducting 
chain to another and have considered the transport in a 1D 
conduction band. Now we will estimate the effect of 
interchain interaction and the restrictions on thermoelectric 
efficiency that this interaction will involve.  

TTT2I3 crystal is of mixed-valence: two molecules of 
TTT give one electron to the iodine chain and the carriers 
are holes. The crystals admit nonstoichiometric 
composition of the form TTT2I3±į with the surplus or 
deficiency of iodine. Therefore the hole concentration 
depends on the iodine content and may be higher or lower 
than the stoichiometric concentration n = 1.21021 cm-3. 
This is very important because usually in order to achieve 
maximum values for ZT it is needed to optimize the carrier 
concentration.  

The charge and energy transport is described in the 
tight binding and nearest neighbors’ approximations. In 
this case the energy of the hole with the 2D quasi-wave 
vector k and projections (kx, ky) has the form 

)]cos(1[2)]cos(1[2)( 21 akwbkw yx k ,    (1) 
where w1 and w2 are the hole transfer energies between the 
nearest molecules along and between the chains, b and a 
are lattice constants along and in transversal direction to 
the chains. The axis x is directed along b, and y is in 
perpendicular direction. The energy in Eq. 1 is measured 
from the upper margin of the conduction band. The 
condition of quasi-one-dimensionality requires that w2 be 
much less than  w1.  In TTT2I3 w2 is  ~ 0.01 w1.   

The frequency of longitudinal acoustic phonons is 
taken in the form 
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where 2D quasi-wave vector q has the projections (qx, qy), 
and Ȧ1 and Ȧ2 are the limit frequencies in the x and y 
directions, and Ȧ2 is much less than Ȧ1.  

As in the 1D approximation considered earlier, two of 
the most important hole-phonon interactions are taken into 
account, completed by interchain transitions of holes. The 

first interaction is determined by the fluctuations of 
polarization energies of molecules surrounding the 
conduction hole and is similar to that of the polaron. The 
coupling constant of this interaction is proportional to the 
mean polarizability of molecule 0 . The second interaction 
is determined by the fluctuations of transfer energies of the 
hole between nearest molecules and is similar to that of the 
deformation potential. Two coupling constants of this 
mechanism are proportional to the derivatives 1w  and 2w  
with respect to the intermolecular distance of w1 and w2. 
The square of matrix element module of hole-phonon 
interaction has the form  
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Here M is the mass of TTT molecule, N is the number of 
molecules in the basic region of the crystal, Ȗ1 and Ȗ2 
indicate the ratios of amplitudes of the first interaction to 
the second one in the direction of chains and in transversal 
direction    
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where e is the carrier charge. For the p-type band 
considered here w1 and w2 are positive and exponentially 
decrease with the increase of intermolecular distance. 
Therefore Ȗ1 and Ȗ2 will be negative.  

The scattering of holes on impurities and thermally 
activated defects is also taken into account. The impurities 
and defects are considered point like and neutral. In this 
case the impurity and defect scattering rates are described 
by the dimensionless parameters D0 and D1exp(-Ea/k0T), 
where Ea is the activation energy of defect formation and 
k0 is the Boltzmann constant. The parameters D0 and D1 
are proportional to impurity and defect concentrations, 
respectively, and can be made very small, if the crystal 
purity and perfection are rather high.   

 
THERMOELECTRIC PROPERTIES  

 
Let’s consider that a weak electrical field and a weak 

temperature gradient are applied along conductive chains. 
Then the linearized kinetic equation takes the form of 
Boltzmann one. In the scattering processes of a hole for 
temperatures T  1 K we can neglect the phonon energy 
[19] and also the transversal kinetic energy of the hole, 
because these energies are much less than the kinetic 
energy of the hole along the chains. Then the kinetic 
equation is solved analytically and the electrical 
conductivity along TTT chains ıxx, the Seebeck coefficient 
Sxx, the electronic thermal conductivity e

xx  and ZT can be 
expressed through the transport integrals Rn as follows  

 
00 Rxx   , 21010 /)/2)(/( RRTkwekS xx  ,  (5)            

 
      )/)](/(4[ 0

2
12

2
0

2
1 RRRTewe

xx   ,         (6) 
 
           )/(2 e

xx
L
xxxxxx TSZT   ,                    (7)       



 3 

where  
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Here L

xx is the lattice thermal conductivity, r is the 
number of chains through the transversal section of the unit 
cell, vs1 is the sound velocity along chains, a, b, c are the 
lattice constants, F is the dimensionless Fermi energy in 
units of 2w1, 110 /)1(    is the dimensionless 
resonance energy in the same units, )/( 0010 Takvs s , 

1212 // wwwwd  . In order to compare with the 1D 
approximation, in Eq. 9 we have introduced a new 
variable ))cos(1( bk x  instead of kx, where   has the 
meaning of dimensionless kinetic energy of a hole along 
chains in units of 2w1, as well as a dimensionless quasi 
momentum Ș = kya instead of ky,  ,n is the Fermi 
distribution function in these new variables. In Eq. 9 the 
signs of Ȗ1 and Ȗ2 were changed, thus, further on, they are 
positive.    

In deduction of Eq. 9 the term proportional to 
2

12 )/( ss avbv which comes from the phonon dispersion 
law and is much less than unity was neglected, where vs2 is 
the sound velocity in the direction perpendicular to chains. 
From Eq. 9 it is seen that, if we put d = 0, i.e. the 
interchain interaction is neglected, the results of the 1D 
approximation follow. In this case the second term in the 
denominator of Eq. 9 is equal to zero. It is also seen that if 
the impurity and defect scattering rates are less than unity, 
the expression under integral (and the relaxation time) in 
Eq. 9 has a maximum around 0  , when 0 < İ0 < 2. It is 
a consequence of the mutual compensation of both hole-
phonon interactions mentioned above [19]. In the 1D case 
this maximum is limited by the impurity and defect 
scattering rates. Since the improvement of ZT is 
determined by the value of this maximum, it was 
recommended earlier to reduce the impurity and defect 
scattering rates, i.e. to increase the crystal purity. In the 2D 
model this maximum is limited also by interchain 
scattering and the increase of crystal purity after the 
limitation imposed by interchain scattering will not give an 
improved result. Therefore, it is very important to 
investigate this limitation for ZT.  

 
RESULTS AND DISCUSSION  

 
The electrical conductivity ıxx, the thermopower 

(Seebeck coefficient) Sxx, the electronic thermal 
conductivity e

xx  and ZT along the conductive chains in 
TTT2I3 crystals have been calculated numerically after Eqs 

(3) – (9). The crystal parameters are: M = 6.5105me (me is 
the mass of the free electron), a =18.35 Å, b = 4.96 Å, c = 
18.46 Å, w1 = 0.16 eV, 1w  = 0.26 eVÅ-1, vs1 = 1.5103 
m/s, EF = 0.12 eV, d = 0.01 [20]. In order to fit 
experimental and theoretical data for ıxx and Sxx at room T 
we have chosen D0 = 0.01, D1 = 1.6 and Ȗ1 = 1.53. A small 
incommensurability between TTT and iodine chains 
produces disorder into TTT chains and defects [21], more 
often with small activation energy Ea ~ 0.024 eV. Usually 
organic crystals have large thermal expansion. The 
coefficient of thermal expansion  is not known in TTT2I3. 
But in antracene  = 14.510-5 K-1. This value was taken 
also for TTT2I3. The thermal expansion is considered only 
in the parameter Ȗ1, because it contains b-5 and its value 
determines the resonance energy which in its turn 
determines the thermoelectric properties.  

In Fig.1 the experimental data [21] for a TTT2I3 
crystal with almost stoichiometric hole concentration are 
represented by rhombs. The measured electrical 
conductivity xx along TTT chains at room temperature is 
1.8105 -1m-1. It is seen that with decreasing temperature 
the electrical conductivity firstly increases, but at values 
lower than ~100 K a smooth metal-dielectric transition 
takes place. Calculated data are represented by lines: 
dashed line is for the 2D model and dotted – for the 1D one 
(in the 1D case only the Fermi energy was a little 

diminished by 0.0016 eV in order to have the same hole 
concentration). It is seen that both lines practically 
coincide. This means that for crystals with relatively high 
content of impurity and defects the 1D and 2D models give 
the same results, because the scattering on impurity and 
defects already limits the carrier mobility. In this case it is 
sufficient to apply the simpler 1D approximation. The 
theory describes very well the temperature dependence of 
xx in the interval from 180 K up to 300 K, the highest T 
for which measurements were made. For lower 
temperatures, probably the fluctuations of the dielectric 
phase appear which lead to a slower increase of xx and 
finally to the metal-dielectric transition. This phenomenon 
is not considered here. 

In Fig.2 the data for the thermopower Sxx are 
presented. Since the thermopower is proportional to the 
ratio R1/R0, it is less sensitive to the fluctuations of the 

Fig.1. The ratio of electrical conductivity at 
temperature T to room temperature one: rhombs 
– experiment; lines – calculations, dashed – for 
2D, dotted – for 1D models.  
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dielectric phase and the theory agrees with the 
experimental data [22] in a rather large temperature 
interval. The measurement of thermal conductivity xx by 
direct method has given 1.0 W/Km at room T. Thus, it 
results ZT  0.1, a rather low value.  

Crystals with ıxx = 106 -1m-1 were also reported [18], 
however Sxx and xx were not measured in them. The 
modeling shows that when ıxx increases, the electronic part 
of thermal conductivity increases too, so that ZT remains 
small. But TTT2I3 crystals allow nonstoichiometric 
composition with surplus or deficiency of iodine which is 

an acceptor and determines the carriers’ concentration.  
In Fig.3 the dependences of ZT on İF at room T are 

presented. The parameter D now describes the joint rates 
of scattering on impurity and defects at room T. The lower 
curves correspond to crystals grown from solution 
considered in Figs.1 and 2. ZT remains small even in its 

maximum value. The middle curves correspond to crystals 
grown by gaseous phase method with ıxx = 106 -1m-1. It is 
seen that if F is diminished down to 0.1 (the hole 
concentration is diminished from 1.21021 cm-3 up to 
0.61021 cm-3), ZT ~ 1.4 is expected. The upper curves 
correspond to somewhat purer crystals with stoichiometric 
ıxx = 2106 -1m-1. In this case ZT ~ 2 is predicted for the 
previous hole concentration. The analysis show that the 
predictions made in 1D approximation are valid only, if the 
crystal purity is not very high and ıxx is limited up to ~ 

3.5106 -1m-1 or ZT up to ~ 4. For higher values of ıxx, or 
respectively of ZT, it is necessary to apply the more 
complete 2D or even 3D model.    

  
CONCLUSIONS 

 
A more complete physical model for nanostructured 

crystals of tetrathiotetracene-iodide that takes into account 
the interaction of carriers with the neighboring one-
dimensional (1D) conductive chains and also the carrier 
scattering on impurities and defects is presented. Modeling 
of thermoelectric properties have shown: (a) calculated 
temperature dependences of ıxx and of thermopower Sxx for 
a crystal with electrical conductivity ıxx = 1.8105 -1m-1 
at room temperature coincide very well with the 
experimental data in the interval 180 - 300K for ıxx and 50  
– 300 K for Sxx; (b) for this crystal, the calculated 
temperature dependences of ıxx and of Sxx in 1D and 2D 
approximations practically coincide in the whole 
temperature interval; (c) the simpler 1D model can be 
applied for crystals with ıxx limited up to ~ 3.5106 -1m-1 
or ZT ~ 4; (d) if the hole concentration is diminished by 
two times, a value of ZT ~ 1.4 is expected in reported 
stoichiometric crystals with ıxx = 106 -1m-1 and ZT ~ 2 in 
those with a somewhat higher ıxx = 2106 -1m-1.   
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