1,848 research outputs found

    Cloud assisted P2P media streaming for bandwidth constrained mobile subscribers

    Get PDF
    Multimedia streaming applications have disruptively occupied bandwidth in wire line Internet, yet today's fledging mobile media streaming still poses many challenges in efficient content distribution due to the form of mobile devices. At the same time, cloud computing is gaining power as a promising technology to transform IT industry and many eminent enterprises are developing their own cloud infrastructures. However, the lack of applications hinders clouds' large-scale implementation. In this paper, we envision a cloud-assisted power-efficient mobile P2P media streaming architecture that addresses the weakness of today's wireless access technologies. Clouds are responsible for storage and computing demanding tasks, and mobile devices colocating with each other share bandwidth and cooperatively stream media content to distribute the load. We first model interactions among mobile devices as a coalition game, and then discuss the optimal chunk retrieval scheduling. Finally, we draw on realistic mobile phone data and utilize an ARIMA model for colocation duration prediction among mobile devices. © 2010 IEEE.published_or_final_versio

    Competitive Bandwidth Reservation via Cloud Brokerage for Video Streaming Applications

    Get PDF
    published_or_final_versio

    Efficient and flexible inter-overlay scheduling of media streams for multi-channel P2P streaming

    Get PDF
    Existing studies on channel bandwidth imbalance in P2P multi-channel streaming systems have been exclusively focused on inter-overlay bandwidth allocation. However, an efficient inter-overlay scheduling algorithm is still in lack for benefactors. To this end, this paper presents an inter-overlay substream scheduling algorithm compatible with various overlay meshes for active inter-overlay cooperation, through which the outbound bandwidth of benefactors can be efficiently utilized and bandwidth-deprived channels receiving benefactions can attain a better streaming quality. © 2012 IEEE.published_or_final_versionThe 2012 International Conference on Computing, Networking, and Communications (ICNC 2012), Maui, HI., 30 January-2 February 2012. In Proceedings of ICNC, 2012, p. 820-82

    Network aware P2P multimedia streaming: capacity or locality?

    Get PDF
    P2P content providers are motivated to localize traffic within Autonomous Systems and therefore alleviate the tension with ISPs stemming from costly inter-AS traffic generated by geographically distributed P2P users. In this paper, we first present a new three-tier framework to conduct a thorough study on the impact of various capacity aware or locality aware neighbor selection and chunk scheduling strategies. Specifically, we propose a novel hybrid neighbor selection strategy with the flexibility to elect neighbors based on either type of network awareness with different probabilities. We find that network awareness in terms of both capacity and locality potentially degrades system QoS as a whole and that capacity awareness faces effort-based unfairness, but enables contribution-based fairness. Extensive simulations show that hybrid neighbor selection can not only promote traffic locality but lift streaming quality and that the crux of traffic locality promotion is active overlay construction. Based on this observation, we then propose a totally decentralized network awareness protocol, equipped with hybrid neighbor selection. In realistic simulation environments, this protocol can reduce inter-AS traffic from 95% to 38% a locality performance comparable with tracker-side strategies (35%) under the premise of high streaming quality. Our performance evaluation results provide valuable insights for both theoretical study on selfish topologies and real-deployed system design. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Conference on Peer-to-Peer Computing (P2P 2011), Kyoto, Japan, 31 August-2 September 2011. In Proceedings of P2P, 2011, p. 54-6

    A new analytical framework for studying protocol diversity in P2P networks

    Get PDF
    Thanks to years of research and development, current peer-to-peer (P2P) networks are anything but a homogeneous system from a protocol perspective. Specifically, even for the same P2P system (e.g., BitTorrent), a large number of protocol variants have been designed based on game theoretic considerations with the objective to gain performance advantages. We envision that such variants could be deployed by selfish participants and interact with the original prescribed protocol as well as among them. Consequently, a meta-strategic situation - judiciously selection of different protocol variants - will emerge. In this work, we propose a general framework, Migration, based on evolutionary game theory to study the coevolution of peers for selfish protocol selection, and, most importantly, its impact on system performance. We apply Migration to P2P systems and draw on extensive simulations to characterize the dynamics of selfish protocol selection. The revealed evolution patterns shed light on both theoretical study and practical system design. © 2013 IEEE.published_or_final_versio

    Competitive Cloud Resource Procurements via Cloud Brokerage

    Get PDF
    In current IaaS cloud markets, tenant consumers non-cooperatively compete for cloud resources via demand quantities, and the service quality is offered in a best effort manner. To better exploit tenant demand correlation, cloud brokerage services provide cloud resource multiplexing so as to earn profits by receiving volume discounts from cloud providers. A fundamental but daunting problem facing a tenant consumer is competitive resource procurements via cloud brokerage. In this paper, we investigate this problem via non-cooperative game modeling. In the static game, to maximize the experienced surplus, tenants judiciously select optimal demand responses given pricing strategies of cloud brokers and complete information of the other tenants' demands. We also derive Nash equilibrium of the non-cooperative game for competitive resource procurements. Performance evaluation on Nash equilibrium reveals insightful observations for both theoretical analysis and practical cloud resource procurements scheme design.published_or_final_versio

    A Study of Competitive Cloud Resource Pricing under a Smart Grid Environment

    Get PDF
    In the current IaaS cloud market, to achieve profit maximization, multiple cloud providers compete non-cooperatively by offering diverse price rates. At the same time, tenant consumers judiciously adjust demands accordingly, which in turn affects cloud resource prices. In this paper, we tackle this fundamental but daunting cloud price competition problem with Bertrand game modeling, and propose a dynamic game to achieve Nash equilibrium in a distributed manner. Specifically, we realistically consider spot electricity prices under a smart grid environment, and systematically investigate the impact of different system parameters such as network delay, renewable availability, and cloud resource substitutability. We also perform stability analysis to investigate the convergence of the proposed dynamic game to Nash equilibrium. Cooperation among cloud providers can achieve aggregate cloud profit maximization, but is subject to strategic manipulations. We then propose our Striker strategy to stimulate cooperation, the efficiency of which is validated by repeated game analysis. Our evaluation is augmented with realistic electricity prices in the spot energy market, and reveals insightful observations for both theoretic analysis and practical pricing scheme design.published_or_final_versio

    Discovering multiple resource holders in query-incentive networks

    Get PDF
    Session - Content Distribution and Peer-to-Peer NetworksIn this paper, we study the problem of discovering multiple resource holders and how to evaluate a node's satisfaction in query incentive networks. Utilizing an acyclic tree, we show that query propagation has a nature of exponential start, polynomial growth, and eventually becoming a constant. We model the query propagation as an extensive game, obtain nodes' greedy behaviors from Nash equilibrium analysis, and show the impairment of greedy behaviors via a repeated Prisoner's Dilemma. We demonstrate that cooperation enforcement is required to achieve the optimal state of resource discovery. © 2011 IEEE.published_or_final_versionThe 8th IEEE Consumer Communications and Networking Conference (CCNC 2011), Las Vegas, NV., 9-12 January 2011. In Proceedings of the 8th CCNC, 2011, p. 1000-100

    Difference in the color stability of direct and indirect resin composites

    Get PDF
    Indirect resin composites are generally regarded to have better color stability than direct resin composites since they possess higher conversion degree. OBJECTIVE: The present study aimed at comparing the changes in color (ΔE) and color coordinates (ΔL, Δa and Δb) of one direct (Estelite Sigma: 16 shades) and 2 indirect resin composites (BelleGlass NG: 16 shades; Sinfony: 26 shades) after thermocycling. MATERIAL AND METHODS: Resins were packed into a mold and light cured; post-curing was performed on indirect resins. Changes in color and color coordinates of 1-mm-thick specimens were determined after 5,000 cycles of thermocycling on a spectrophotometer. RESULTS: ΔE values were in the range of 0.3 to 1.2 units for direct resins, and 0.3 to 1.5 units for indirect resins, which were clinically acceptable (Δ

    Genetic markers for antioxidant capacity in a reef-building coral

    Get PDF
    © 2016 The Authors. The current lack of understanding of the genetic basis underlying environmental stress tolerance in reef-building corals impairs the development of new management approaches to confronting the global demise of coral reefs. On the Great Barrier Reef (GBR), an approximately 51% decline in coral cover occurred over the period 1985-2012. We conducted a gene-by-environment association analysis across 12 latitude on the GBR, as well as both in situ and laboratory genotype-by-phenotype association analyses. These analyses allowed us to identify alleles at two genetic loci that account for differences in environmental stress tolerance and antioxidant capacity in the common coral Acropora millepora. The effect size for antioxidant capacity was considerable and biologically relevant (32.5 and 14.6% for the two loci). Antioxidant capacity is a critical component of stress tolerance because a multitude of environmental stressors cause increased cellular levels of reactive oxygen species. Our findings provide the first step toward the development of novel coral reef management approaches, such as spatial mapping of stress tolerance for use in marine protected area design, identification of stress-tolerant colonies for assisted migration, and marker-assisted selective breeding to create more tolerant genotypes for restoration of denuded reefs
    • …
    corecore