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Abstract—In the current IaaS cloud market, to achieve
profit maximization, multiple cloud providers compete non-
cooperatively by offering diverse price rates. At the same time,
tenant consumers judiciously adjust demands accordingly, which
in turn affects cloud resource prices. In this paper, we tackle
this fundamental but daunting cloud price competition problem
with Bertrand game modeling, and propose a dynamic game to
achieve Nash equilibrium in a distributed manner. Specifically,
we realistically consider spot electricity prices under a smart
grid environment, and systematically investigate the impact of
different system parameters such as network delay, renewable
availability, and cloud resource substitutability. We also perform
stability analysis to investigate the convergence of the proposed
dynamic game to Nash equilibrium. Cooperation among cloud
providers can achieve aggregate cloud profit maximization, but is
subject to strategic manipulations. We then propose our Striker
strategy to stimulate cooperation, the efficiency of which is val-
idated by repeated game analysis. Our evaluation is augmented
with realistic electricity prices in the spot energy market, and
reveals insightful observations for both theoretic analysis and
practical pricing scheme design.

Keywords—Cloud computing, competitive resource pricing,
resource allocation, game theory, dynamic game.

I. INTRODUCTION

Cloud computing has fundamentally transformed the way

of business operations in many industries. In particular, the

Infrastructure-as-a-Service (IaaS) view is adopted by large

companies such as Amazon, Google, and Microsoft [1]–[3] to

deploy Internet-scale data centers where Internet users, small

startups, and even large service providers (e.g., Hulu) can

host their applications by dynamically renting computing and

storage resources as tenant consumers [4]–[7]. Specifically,

cloud providers offer cloud resources such as CPU, memory,

and bandwidth as sellers. Tenants as buyers dynamically ac-

cess cloud resources in bundles of virtual instances. Currently,

serveral large cloud facilities such as Amazon EC2 [1], Google

App Engine [2], and Microsoft Azure [3] dominate the entire

market. Therefore, in such an oligopoly cloud market, the few

cloud providers as oligopolists compete strategically in terms

of offered price rates, to achieve their own profit maximization.

Instance prices intrinsically dictate resource allocation in

IaaS clouds. Cloud price competition, largely unexplored,

fundamentally determines instance price dynamics, which in

turn affects tenant demand variations. Such tenant demand

variations further influence pricing strategies of all cloud

providers. In cloud pricing scheme design, cloud providers

should consider not only profit maximization, but also optimal

tenant demand responses. Therefore, a study of cloud price

competition is challenging but helps to better understand the

sustainable profitability of the cloud business. To further ag-

gravate the problem, in a smart grid environment, temporal and

spatial variations of electricity prices expose cloud providers

to the risk of operational cost fluctuations.

In this paper, we tackle the problem of competitive

cloud resource pricing by proposing a non-cooperative game

to tractably investigate the price competition among cloud

providers and its impact on cloud profit, tenant surplus, and

instance prices. Under the practical scenario in which prices

of different cloud providers are observable, the Bertrand game

model for price competition is used to analyze and derive the

equilibrium prices for a cloud market consisting of multiple

cloud providers. To the best of our knowledge, we are among

the first to study competitive cloud resource pricing. Specifi-

cally, our contributions are three-fold.

Firstly, we build a general model to realistically capture

cloud resource pricing scheme design (Section II). Tenants

make optimal demand response decisions to maximize their

surplus (i.e., tenant utility minus dollar cost), given experi-

enced service qualities and instance prices. Bearing tenant

optimal demands and instance prices of the other cloud

providers, one cloud provider optimizes its pricing decisions

for profit maximization. Rigorous equilibrium analysis is

provided, together with a dynamic game based on bounded

rationality for cloud providers to achieve equilibrium prices

in a distributed manner using local information only. Stability

analysis is performed to investigate the convergence of the

dynamic game.

Secondly, cloud providers can achieve higher profits than

their equilibrium profits via cooperation, and attain aggregate

profit maximization at the same time (Section III). This is

credible in that only few cloud providers exist and compete

in an oligopoly cloud market. However, in a one-shot static

game, all the cloud providers adopt Nash equilibrium prices

due to strategic interactions. Therefore, we model strategic

cloud pricing as a repeated game, based on which we propose

our Striker strategy for coercing cloud providers to cooperate
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in instance pricing. The key idea of the Striker strategy is to

provide enough threats to selfish cloud providers and thwart

them from deviating from cooperation.

Thirdly, we conduct extensive performance evaluation to

validate our analytical model and obtain insightful observa-

tions (Section IV). Our evaluation is augmented with realistic

electricity prices in spot energy markets. We systematically

investigate the impact of network delay, resource substitutabil-

ity, and electricity prices on equilibrium prices. For instance,

a negative correlation exists between instance prices and

resource substitutability. It is validated that the dynamic game

converges to Nash equilibrium, and that there is a tradeoff

between cloud profit and tenant surplus. We have also obtained

conditions of effective threatening for our Striker strategy.

II. CLOUD RESOURCE PRICING COMPETITION AND

EQUILIBRIUM ANALYSIS

In this section, we build a game theoretic model for com-

petitive cloud resource pricing. We first discuss tenant surplus

and optimal demand response, followed profit analysis of

cloud providers. Bertrand game is proposed to model cloud

price competition, and dynamic game is used to achieve Nash

equilibrium in a distributed manner.

A. Tenant Surplus and Optimal Demand Responses

To quantify payoffs obtained from resource consumption,

tenant utility explicitly considers demand responses and the

experienced service qualities. The service quality is dependent

on both network delay (i.e., transmission delay due to request

routing) and queueing delay (i.e., delay incurred by waiting for

cloud service). Due to the illusion of infinite capacity in cloud

computing, we assume no queueing delay in our analysis.

Denote by N the number of cloud providers in the cloud

market. Cloud provider i sells cloud resources at price rate

pi per virtual instance. Denote by di the demand from cloud

provider i. Then, d = {d1, · · · , di, · · · , dN} is the vector

of demands from all cloud providers. Denote by γi the in-

curred network delay due to resource consumption from cloud

provider i. Γ represents the maximum experienced network

delay. Then, the payoff of unit virtual instance can be modeled

as:

bi = K · ln (1 + (Γ− γi)) , (1)

where K is a constant. Recall that pi is the price offered by

cloud provider i. Then, we define the tenant i’s surplus as the

following commonly adopted quadratic function:

U(d) =

N∑
i=1

di ·bi− 1
2
·
⎛
⎝ N∑

i=1

d2i + 2μ ·
∑
i�=j

di · dj
⎞
⎠− N∑

i=1

di ·pi
(2)

Our model considers resource substitutability through pa-

rameter μ ∈ [−1.0, 1.0]. When μ = 1.0, the tenant user

can freely switch among multiple cloud resource providers

for virtual instance reservation. The function is concave, and

thus reflects the law of diminishing return, with the saturation

of user satisfaction as the amount of resource reservation

increases. We also consider the service quality of different

cloud providers via parameter bi.

THEOREM 1. The optimal demand response of tenant i is

given by:

Di(p) =
(bi − pi) (μ (N − 1) + 1)− μ

∑N
j=1 (bj − pj)

(1− μ) (μ (N − 1) + 1)
,

(3)

where p = {p1, · · · , pi, · · · , pN} is the vector of prices

offered by all the cloud providers.

Proof. To derive the optimal demand of the tenant user at cloud

provider i, we differentiate U(b) with respect to the demand

level di:

∂U(b)

∂di
= bi − di − μ

∑
j �=i

dj − pi = 0. (4)

By solving the above equations, we can obtain the optimal

demand response.

B. Profit of Cloud Providers

The profit of cloud providers is the revenue collected from

tenants minus the operating cost. We can easily get the revenue

from the sale of cloud resources:

Ri = pi · di. (5)

To obtain operating cost, we consider energy cost, which

constitutes the majority of the operating cost. We consider

both electricity draw from the utility grid, and available renew-

ables. The electricity price Pri has both temporal and spatial

variations under a smart grid environment. The renewable

availability for cloud provider is r, which is in the units of

the number of virtual instances that can be powered. Denote

by Ei renewable prices at cloud provider i. Then, we obtain

the energy cost as expressed below:

Ci = Pri · (di − r)
+
+ Ei ·min(r, di), (6)

where (x)+ = max(x, 0).

Therefore, cloud provider i’s profit is given by

Pi(p) = Ri − Ci

= pi · di + Pri · (di − r)
+
+ Ei ·min(r, di).

(7)

In practice, the aggregate tenant consumption is no smaller

than renewable provision. That is, cloud providers have to

procure energy from the electricity market. Then, we have

Pi(p) = Ri − Ci

= pi · di − Pri · (di − r)− Ei · r.
(8)
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C. Bertrand Game Model

Based on the above analysis, we use a Bertrand game to

model competitive pricing. The players in this game are cloud

providers. The strategy of each player (i.e., cloud provider

i) is the price per virtual instance. The payoff of each cloud

provider i is the profit earned from the sale of cloud resources.

The solution concept is Nash equilibrium.

The Nash equilibrium of a game is a solution that no

player can increase his own payoff by unilaterally choosing

a different strategy. The Nash equilibrium can be obtained by

using the best response function, which is the optimal strategy

of one player given the others’ strategy choices. That is, the

best response function of cloud provider i can be formulated

as:

BRi(p−i) = argmax
pi

Pi(p), (9)

where p = p−i ∪{pi} and p−i is the set of prices offered by

cloud providers other than i.
Denote by p∗ = {p∗1, · · · , p∗i , · · · , p∗N} the Nash equilib-

rium of the pricing game. Then, we have:

p∗i = BRi(p
∗
−i), ∀i (10)

where p∗−i denotes the set of best responses for all the cloud

providers other than i. To this end, we can obtain the Nash

equilibrium by solving the following equation array:

∂Pi(p)

∂pi
= 0. (11)

By definition of cloud profit, the marginal profit function is:

∂Pi(p)

∂pi
= Di(p) + (pi − Pri) · ∂Di(p)

∂pi
. (12)

From optimal demand response given by Equation 3, we get:

∂Di(p)

∂pi
= − μ(N − 2) + 1

(1− μ) (μ(N − 1) + 1)
. (13)

The solution p∗ of equations given by
∂Pi(p)
∂pi

= 0 is a Nash

equilibrium. In practice, the cloud providers set prices using

the Nash equilibrium, and the optimal demand response of the

tenant user can be obtained from the demand function Di(p
∗).

THEOREM 2. The Nash equilibrium solution p∗ is given

by

p∗i =
Y ·Q−X · bi + Z · Pri

Z −X
, (14)

where X = 1
1−μ , Y = μ

(1−μ)(μ(N−1)+1) , Z =

− μ(N−2)+1
(1−μ)(μ(N−1)+1) , and Q =

Z
∑N

j=1(bj−Prj)

Z+Y N−X .

Proof. From Equation 3, we get:

Di(p) =
bi − pi
1− μ

− μ

(1− μ) (μ(N − 1) + 1)
·

N∑
j=1

(bj − pj)

= X(bi − pi)− Y
N∑
j=1

(bj − pj), (15)

where X = 1
1−μ and Y = μ

(1−μ)(μ(N−1)+1) .

Substitute the above into Equation 11 and Equation 12. We

have

∂Pi(p)

∂pi
= X(bi− pi)−Y

N∑
j=1

(bj − pj)+Z(pi−Pri), (16)

where Z = ∂Di(p)
∂pi

= − μ(N−2)+1
(1−μ)(μ(N−1)+1) . Then, we get:

N∑
i=1

∂Pi(p)

∂pi
= (X − Y N − Z)

N∑
j=1

(bj − pj)

+Z
N∑
j=1

(bj − Prj)

= 0. (17)

Then, we have

N∑
j=1

(bj − pj) =
Z
∑N

j=1(bj − Prj)

Z + Y N −X
. (18)

Substituting the above equation into Equation 16, we have

pi =
Y ·Q−X · bi + Z · Pri

Z −X
, (19)

where Q =
Z

∑N
j=1(bj−Prj)

Z+Y N−X .

D. Dynamic Bertrand Game and Best Response Algorithms
To obtain the Nash equilibrium in Theorem 2, we need

complete information of all cloud providers. However, in

practice, one cloud provider may not know others’ profit

information. To this end, we propose distributed learning

algorithms for dynamic price adjustments so as to gradually

achieve Nash equilibrium for competitive pricing.
Denote by pi(t) the price offered by cloud provider i at time

slot t. The price vectors p−i(t) and p(t) are defined similarly.

The pricing strategies of cloud providers approach to Nash

equilibrium via iterative strategy updating. The ideal case is

that the pricing strategies of all the other cloud providers at

time t is observable by cloud provider i. Then, we have the

best response algorithm:

pi(t+ 1) = BRi(p−i(t)), ∀i. (20)

However, as discussed above, in a realistic cloud system, the

assumption of perfect information may not be substantiated.

Therefore, each cloud provider can employ only local infor-

mation and tenant demands to adapt offered prices. Intuitively,

each cloud provider should adjust its strategy in the direction

of profit maximization. Then, we can derive the strategy in the

next iteration based on the price in the current iteration:

pi(t+ 1) = pi(t) + δi ·
(
∂Pi(p(t))

∂pi(t)

)
, (21)

where δi is the updating step and determines the learning rate

of the iterative algorithm. This dynamic game is based on

the concept of bounded rationality, which does not update the

strategy to the optimal one immediately but approaches to the

optimal one gradually. This is reasonable when the collected

information about the environment is not reliable or accurate

enough.
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E. Stability Analysis

Stability analysis is critical for both the dynamic learning

algorithms to ensure that the Nash equilibrium can be achieved

at the steady state. We analyze the stability of both algorithms

by considering the eigenvalues of the Jacobian matrix of the

self-mapping functions in Equation 20 and Equation 21. In

particular, the dynamic algorithm is stable if and only if the

eigenvalues λi are all inside the unit circle in the complex

plane (i.e., |λi| < 1). In our analysis, the Jacobian matrix is

calculated as follows:

J =

⎡
⎢⎢⎢⎢⎣

∂p1(t+1)
∂p1(t)

∂p1(t+1)
∂p2(t)

· · · ∂p1(t+1)
∂pN (t)

∂p2(t+1)
∂p1(t)

∂p2(t+1)
∂p2(t)

· · · ∂p2(t+1)
∂pN (t)

...
...

...
∂pN (t+1)
∂p1(t)

∂pN (t+1)
∂p2(t)

· · · ∂pN (t+1)
∂pN (t)

⎤
⎥⎥⎥⎥⎦ . (22)

Denote by jmn the element at row m and column n in the

Jacobian matrix. We employ the case of two cloud providers to

perform stability analysis for clarity. The same approach can

be applied to the case of arbitrary number of cloud providers

for stability analysis.

Denote the matrix form of the dynamic game in Equation

20 by:

p(t+ 1) = F1(p(t)), (23)

and the matrix form of the dynamic game in Equation 21 by:

p(t+ 1) = F2(p(t)), (24)

where F1(·) and F2(·) are the corresponding self-mapping

functions.

For both dynamic algorithms, at the equilibrium, we have

p(t + 1) = p(t) = p, where p is the fixed point. Then, we

have:

p = Fk(p), ∀k ∈ {1, 2}. (25)

In the following, we consider the two dynamic games

respectively. For clarity, we consider the special case of two

cloud providers (i.e., N = 2). From Theorem 2, we have the

Nash equilibrium:

p∗ =
(
Y ·Q−X · b1 + Z · Pr1

Z −X
,
Y ·Q−X · b2 + Z · Pr2

Z −X

)
.

(26)

Algorithm 1. First, we consider the bet response algorithm,

(i.e., that defined by Equation 20). From Equation 25, we

can obtain the fixed point, if any, by solving the following

equations:

pi = F1(pi), ∀i, (27)

which obviously gives the Nash equilibrium as the solution

for the fixed point (i.e., p = p∗). From equations given by

16, we also have

pi(t+1) = BRi(p−i(t)) =
Y
∑

N
j �=i(bj − pj) + ZPri − (X − Y )bi

Y + Z −X
,

(28)

from which, we obtain the Jacobian matrix of the algorithm:

J1 =

[
0 − Y

Y+Z−X

− Y
Y+Z−X 0

]
, (29)

which is a diagonal matrix and the diagonal elements are the

two eigenvalues λi = −wi

xi
, ∀i ∈ {1, 2}. The fixed point is

stable if and only if |λi| < 1. Therefore, the stability condition

is | − Y
Y+Z−X | < 1. That is, | μ

2μ(N−2)+2 | < 1, implies that

the fixed point of Nash equilibrium is always stable.

Algorithm 2. Second, we consider the dynamic game requir-

ing no complete information (i.e., that defined by Equation 21).

From Equation 25, we can obtain the fixed point, if any, by

solving the following equations:

pi = F2(pi), ∀i, (30)

which gives

δi ·
(
∂Pi(p)

∂pi

)
= 0. (31)

Therefore, the unique fixed point is also the Nash equilibrium:

p = p∗. (32)

Again, from equations given by Equation 16 and

pi(t+ 1) = pi(t) + δi · ∂Pi(p(t))

∂pi(t)
, (33)

(34)

we obtain the Jacobian matrix of the algorithm:

J2 =

[
1 + δ1(Z + Y −X) δ1Y

δ2Y 1 + δ2(Z + Y −X)

]
, (35)

which is neither diagonal nor triangular. Therefore, we derive

the eigenvalues from the characteristic equation λ2 − λ(j11 +
j22) + (j11j22 − j12j21) = 0, the roots of which are the

eigenvalues of the Jacobian matrix:

(λ1, λ2) =
(j11 + j22)±

√
4j12j21 + (j11 − j22)2

2

= 1 +
(δ1 + δ2)(Z + Y −X)

2

±
√
4δ1δ2Y 2 + (δ1 − δ2)2(Z + Y −X)2

2
.(36)

The stability condition is again |λi| < 1. The condition

is determined by X , Y , and Z, which is independent of

electricity prices and the benefit obtained by the tenant users

from the reserved resources. However, the stability condition

is highly dependent on the resource substitutability (i.e., μ)

and the updating step sizes (i.e., δi).

III. COERCION FOR AGGREGATE PROFIT MAXIMIZATION

A. Optimal Pricing for Aggregate Profit Maximization

The total profit for all the cloud providers is given by∑N
i=1 Pi(p). The optimal price for all the cloud providers can

therefore be obtained by solving the following problem:

max
p�0

N∑
j=1

Pj(p). (37)
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The problem can be solved by solving the following linear

equations:

∂
∑N

j=1 Pj(p)

∂pi
= 0, ∀i. (38)

This gives optimal prices, different from equilibrium prices

achieved in the Bertrand game (refer to Theorem 2).

THEOREM 3. The optimal prices for cloud profit maxi-

mization is given by:

p∗i =
bi + Pri

2
. (39)

Proof. From Equation 3 and Equation 8, we have

N∑
j=1

Pj(p) =

N∑
j=1

pjDj(p)−
N∑
j=1

Prj(Dj(p)− r)−
N∑
j=1

Ejr.

From Equation 15, we have

∂Dj(p)

∂pi
= Y, ∀i �= j, (40)

∂Di(p)

∂pi
= Y −X, ∀i. (41)

Then, we get the marginal function of the total profit:

∂
∑N

j=1 Pj(p)

∂pi
= Di(p) +

N∑
j=1

(pj − Prj) · Y

−(pi − Pri) ·X
= 0. (42)

Substituting Equation 15 into the above equation, we obtain

0 = 2X(bi − pi)−X(bi − Pri)− 2Y

N∑
j=1

(bj − pj)

+Y
N∑
j=1

(bj − Prj), ∀i. (43)

Summing up the left side and right side of the above equations,

we get
N∑
j=1

(bj − pj) =

∑N
j=1(bj − Prj)

2
. (44)

From the above two equations, we obtain

p∗i =
bi + Pri

2
. (45)

1) Non-Cooperation in a Static Game: As demonstrated

above, optimal prices for aggregate profit maximization are

different from resource prices in the Nash equilibrium. There-

fore, in a static game (i.e., the game is played only once), one

or more of cloud providers can boost the experienced utility

by unilaterally deviating from the optimal prices incurred

by cooperation. Denote by C the cooperative strategy (i.e.,

adopting optimal prices for aggregate profit maximization),

and D the non-cooperative strategy (i.e., adopting the deviation

prices using best response function). Denote by N the strategy

to adopt the equilibrium prices. By definition, we get the

following theorem.

THEOREM 4. There exists a unique N.E. 〈N,N〉 for the

static cloud resource pricing game.

B. Coercing Non-Cooperative Cloud Providers

In practice, the cloud resource pricing game is played

repeatedly among cloud providers. In this section, we demon-

strate the feasibility of coercion leading to cooperation in

this repeated cloud pricing game. Then, we propose a novel

Striker strategy to coerce non-cooperative cloud providers

to cooperate. The crux is to provide enough threat to non-

cooperative behaviors so as to prevent strategic deviation from

cooperation.

1) Repeated Game Modeling: We now model the repeated

aspects in the cloud pricing game. Denote by Pi(t) the

profit of cloud provider i for strategy si(t) taken in time

round t. We utilize the discounted average of cloud profits

obtained in different time periods to model and evaluate cloud

utilities. Thus, we can evaluate an arbitrary strategy sequence

{si(t), 0 ≤ t ≤ T} by

P i =
T∑

t=0

[
Pi(t) · λi

t
]
. (46)

In a realistic cloud system, T denotes how long they care about

the future. The discount factor, denoted as λi (0 ≤ λi ≤ 1),

models the shadow of the future (i.e., the importance of profits

obtained from subsequent moves relative the previous move).

In this paper, we adopt the infinitely repeated game (i.e., T =
+∞) because all cloud providers have no idea about exactly

when the game will stop (i.e., the ending date of the cloud

business).

2) Coercion Feasibility: Before further discussions on in-

centive scheme design for coercion leading to cooperation, we

need to first answer whether it is feasible to enforce an N.E.

in which both players are cooperative with our infinite game

modeling. This is important because according to the backward

induction principle, 〈N,N〉 is also N.E. in a finitely repeated

game with the game termination time explicitly known to all

cloud providers. Fortunately, we can always enforce a strategy

path yielding players payoffs larger than the minmax payoff

in N.E. The minmax payoff is defined below [8].

DEFINITION 1. The minmax payoff of player x is defined

as

min
sy∈Sy

(
max
sx∈Sx

Px (sx, sy)

)
, (47)

where x ∈ {τ, i} and {y} = {τ, i} \ {x}. Here, Sx is the

strategy space of player x.

This proves the feasibility to enforce an N.E. 〈C,C〉, which

yields the profit, larger than the minmax payoff. Indeed, the

minmax payoff is the profit obtained in the N.E. in the static

game (i.e., 〈N,N〉).
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3) Striker Strategy: In a repeated game, the cloud providers

play the pricing game for multiple rounds, and the outcome of

the previous play is observable by other players. Consequently,

the cloud providers may adjust their actions by coordinating

with each other so as to achieve the desirable outcome.

Therefore, we propose our Striker strategy, taken by cloud

providers for coercing others to cooperation. In particular,

cloud providers apply limited punishments as threatening to

non-cooperative ones: ∀t ≥ 0, cloud providers select

1. strategy C in time round t+1, if all others adopt strategy

C in time round t;

2. strategy N in time rounds from t+1 to t+ Ti, if some

cloud providers adopt strategy N in time round t.

C. Effective Threatening

Responding to the threat, non-cooperative cloud providers

can continue the non-cooperation or switch to the choice

of cooperation. This depends on the experienced discounted

profits. Intuitively, when the punishment intensity is large

enough, non-cooperative ones do not have incentives to deviate

from cooperation.

DEFINITION 2. We define a threat to be effective if non-

cooperative cloud providers switch to cooperation after the

threat.

We now derive conditions on which threatening in our

Striker strategy is effective. For cloud provider i, denote by P c
i ,

P d
i , P p

i the profits obtained by adopting cooperation strategy

C, deviation strategy D, and punishment strategy N (i.e., Nash

equilibrium profits), respectively. Denote by P̃ d
i the profits

obtained by a cooperative cloud provider when some others

adopt strategy D.

THEOREM 5. If and only if

P d
i − P c

i

P c
i − P p

i

≤
λi ·

(
1− λTi

i

)
1− λi

, (48)

the striker strategy taken by cloud providers yields a unique

and strict N.E. 〈C,C〉.
Proof. We have three cases.

Case 1. If all the cloud providers play the game coopera-

tively and infinitely, the long-term profit of cloud provider i
is:

∞∑
t=0

[P c
i · λt

i] = P c
i +

λi ·
(
1− λTi

i

)
1− λi

· P c
i +

λTi+1
i

1− λi
· P c

i . (49)

However, if cloud provider i deviates from the cooperation

in the current stage, then all the cloud providers will operate at

Nash equilibrium for Ti game plays. Then, we have the other

two cases:

Case 2. First, cloud provider i becomes cooperative after Ti

rounds. Therefore, long-term profit of cloud provider i is:

P d
i +

Ti∑
t=1

[P p
i · λt

i] +
∞∑

t=Ti+1

[P c
i · λt

i]

= P d
i +

λi ·
(
1− λTi

i

)
1− λi

· P p
i +

λTi+1
i

1− λi
· P c

i . (50)

Case 3. Second, cloud provider i may resist the punishment

and continue to be non-cooperative. Then, long-term profit of

cloud provider i is:

∞∑
t=0

[Pi(t) ·λt
i] = P d

i +
∞∑
t=1

[P p
i ·λt

i] = P d
i +

λi

1− λi
·P p

i . (51)

To promote cooperation, the utility obtained in case 1 should

be the greatest among all three cases. The utility obtained in

case 2 is larger than that obtained in case 3 in that P c
i ≥ P p

i

by definition. Therefore, the sufficient and necessary condition

is given by:

P c
i +

λi ·
(
1− λTi

i

)
1− λi

·P c
i ≥ P d

i +
λi ·

(
1− λTi

i

)
1− λi

·P p
i , (52)

which gives the conclusion in the theorem.

Therefore, in the special case with Ti =∞ (i.e., the trigger

strategy), the sufficient and necessary condition of cooperation

among all the cloud providers is:

λi ≥ P d
i − P c

i

P d
i − P p

i

. (53)

In other words, if and only if the above lower bound of λi is

satisfied, the threatening implemented by the Striker strategy

is effective.

DEFINITION 3. We define a threat to be credible if under

the triggering condition, the threat-claimer would obtain no

less utility than not carrying out the threat.

THEOREM 6. On the condition that Theorem 5 holds, the

Striker strategy is credible and will always be adopted by cloud

providers.

Due to page limit, we omit the proof which is similar to

Theorem 5.

IV. PERFORMANCE EVALUATION

In this section, we present our evaluation results on the

proposed game model and algorithms for competitive resource

pricing.

A. Setup

We augment our evaluation with realistic electricity prices

in the spot market [9]. We consider a cloud market with two

cloud providers and one tenant user so as to obtain clear

insights into competitive cloud resource pricing. In the evalu-

ation, we first use the average hourly prices of the electricity

markets in California and New York on February 29, 2012

(i.e., Pr1 = 26.4146$/MWh and Pr2 = 29.7846$/MWh)

so that we can observe the impact of price competition on
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(c) Convergence of the dynamic game.

Fig. 1: Spot electricity markets, Nash equilibrium, and algorithm convergence. (a) The price variation in the hourly market in

California and New York on February 29, 2012. (b) Illustration of Nash equilibrium calculated by best response functions.

(c) The convergence of the cloud providers’ prices to the Nash equilibrium in the dynamic game.

equilibrium instance prices. Then, we use the hourly electricity

price time series (as shown in Fig. 1(a)) to examine the impact

of electricity price dynamics on the spot resource prices in the

cloud market. For the cloud profit model, we use α = 0.1,

r = 5, Ei = 10. For tenant surplus, we use the maximum

incurred delay L = 30000, γ1 = 5000, γ2 = 3000, μ = 0.1,

and K = 10 by default.

B. Nash Equilibrium and Convergence of the Dynamic Game

Fig. 1(b) illustrates the calculation of the Nash equilibrium

using best response functions. It is observed that higher

resource substitutability leads to lower equilibrium instance

prices due to more fierce competition. Fig. 1(c) shows the

price dynamics under the dynamic game for δi = 0.8. It is

observed that the prices for both cloud providers converge

to the equilibrium levels despite the initial stage of price

fluctuations. Actually, the fluctuations are larger for greater

δi, and the dynamic game even never converges for sufficient

large δi.

C. Price Competition among Cloud Providers

Fig. 2(a) shows the impact of network delay on equilibrium

prices. We find that the price of cloud provider 1 is lower

due to the larger network delay, when γ2 < γ1, and vice

versa for γ2 > γ1. This shows the competitive relationship

between the two cloud providers for pricing scheme design.

That is, lower service quality of one cloud provider may

decrease its own prices but increase the resource prices of the

other one at Nash equilibrium. This reflects the adaptation of

the tenant’s demands to the service quality of different cloud

resource providers. Indeed, lower service quality will reduce

the tenant demand, and cloud provider 2 will lower down

the resource price so as to increase its own profit at Nash

equilibrium. In Fig. 2(b), we use the same network delay for

both cloud providers (i.e., γi = 5000) so as to observe the

impact of cloud provider numbers on cloud resource prices.

It is noticed that resource prices decrease with the increase in

the number of cloud providers. This illustrates the formulation

of an oligopoly market for cloud resource sharing. Fig. 2(c)

shows the dynamics of cloud resource prices in a smart grid

environment. By comparing it with Fig. 1(a), we observe

the positive correlation between cloud resource prices and

electricity cost. This indicates the critical role of energy cost

in cloud resource pricing.

D. Tradeoff between Cloud Profit and tenant Surplus

From Fig. 3(a) and Fig. 3(b), it is observed that there is a

negative relationship between cloud profit and substitutabil-

ity, but a positive relationship between tenant surplus and

substitutability. That is, the cloud profit decreases, while the

tenant surplus increases with the increase of substitutability.

We observe similar relationships among cloud profit, tenant

surplus, and electricity prices. This implies that there is a

fundamental tradeoff between cloud profit and tenant surplus.

Moreover, compared with Nash equilibrium, the cloud profit is

higher and the tenant surplus is lower under the optimal pricing

for cloud profit maximization. Fig. 3(c) shows the lower

bounds of the discount factors for both cloud providers so that

the punishment in trigger strategy is effective. It is observed

that the lower bounds are higher for higher substitutability.

At the same time, the lower bounds can be readily satisfied

because in practice the discount factors are much larger.

V. RELATED WORK

Cloud resource pricing recently draws great attention to the

research community [10]. In a realistic cloud market, both

spot prices and usage-based prices exist for the convenience

of tenant users. Wang et al. [7] optimize cloud revenue by

dynamically partitioning the cloud capacity between the two

pricing tiers. Niu et al. [11], [12] argue the necessity of

cloud tenants to multiplex cloud resources among correlated

tenant traffic. Most relevant, Xu et al. [13], [14] assume a

demand distribution and achieve cloud revenue maximization

by proposing a centralized optimization framework. Cao et al.
[15] explore cloud profit maximization by building queueing

models for optimal multiserver configuration. Despite the

above recent studies on cloud resource pricing, they ignore
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(c) The impact of spot electricity prices.

Fig. 2: Cloud resource prices under cloud provider competition. (a) Price variation under different cloud resource

substitutability and network delay. (b) Price variation under multiple cloud providers. (c) Price dynamics using electricity

spot prices in hourly electricity spot markets on February 29, 2012.
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(c) Lower bounds of discount factors for cooperation.

Fig. 3: Cloud profit, tenant surplus, and the maintenance of total profit maximization. (a) Cloud profit comparison under

different substitutability and electricity prices. (a) tenant surplus comparison under different substitutability and electricity

prices. (c) Minimum discount factors to maintain cooperation for total profit maximization under trigger strategy.

the problem of the competitive nature among cloud providers

and its critical impact on cloud profit and tenant demands.

VI. CONCLUDING REMARKS

In this paper, we explore the problem of competitive cloud

resource pricing for cloud providers. Indeed, cloud providers

compete for profit maximization in an oligopoly market. We

realistically model the pricing scheme of the cloud provider

by considering the impact of network delay, renewables, and

electricity prices. We propose a noncooperative game to model

such competitive resource pricing. We then conduct equilib-

rium analysis under the assumption of perfect information.

To relax the assumption of perfect information, we propose

the adoption of dynamic game to reach Nash equilibrium in a

distributed manner by using local information only. The results

revealed insightful observations for practical pricing scheme

design. In the future, we would like to extend our model to

the more general case of multiple tenant users.
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