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1. Introduction 
The Infrastructure-as-a-Service (IaaS) view of cloud 
computing is widely adopted by several large cloud 
providers, which has fundamentally changed the 
operation of many industries [1-3]. Indeed, large cloud 
providers such as Amazon Web Services [4], Windows 
Azure [5Error! Reference source not found.], and 
Google App Engine [6] offer Internet-scale distributed 
computing facilities, where tenant users can 
dynamically reserve cloud resources including CPU, 
memory, and bandwidth so as to satisfy their own 
service requirements [7].  
 
In such a multi-tenant cloud computing environment, 
cloud brokers exploit demand correlation among 
tenants and obtain volume discounts from cloud 
providers via tenant demand aggregation. Therefore, 
tenants dynamically procure resources via cloud 
brokerage services due to lower offered price rates. 
Therefore, we consider resource procurements from 
cloud brokers, and tackle the problem of tenant demand 
competition with a realistic broker pricing policy. In a 
practical cloud market, resource demands and prices 
will be cleared at an equilibrium level, where tenant 
consumers maximize their surplus and cloud brokers 
optimize the collected revenue given optimal demand 
responses of tenant consumers.  
 
In this paper, our specific contributions are three-fold. 
Firstly, we build a general game model to realistically 
capture broker pricing scheme design. Tenant surplus 
(i.e., tenant utility minus dollar cost) is realistically 
formulated to model tenant rationality. Secondly, to 
relax the impractical assumption of complete 
information, we propose a dynamic game based 
bounded rationality to attain Nash equilibrium in a 
distributed manner by using only local information. 
Thirdly, we present evaluation results to validate our 
analytical model and obtain insightful observations.  

2. Game Model for Tenant Competition 
We consider a cloud system with multiple cloud 
brokers and a large number of tenant users. Denote by 
N the number of tenant users in the cloud system. The 
number of cloud brokers is M. The broker i sells the 
cloud resources at price rate pi.  

Pricing Model. 
The commodity sold in the cloud market is in the units 
of bandwidth. To model prices offered by cloud broker 
i, we consider a realistic pricing function where 
demands affect prices:  

 
where dij is the amount of resources reserved by tenant 

j from cloud broker i, and di=[di1,⋯,dij,⋯,diN]T  

is the vector of all resource demands at broker i. This 
practically reflects the situation that the price increases 
with the growth of aggregate demand at one cloud 
broker due to the limited amount of cloud resources 
reserved from cloud providers.  
 
Tenant Surplus. 
Denote by lij  the network delay due to tenant j’s 

resource procurements from cloud broker i. L represents 
the maximum experienced network delay in the entire 
cloud system. Then, the utility of unit bandwidth 
resource can be modeled as  

bij=ln ( )1+ ( )L−lij ,                    (2) 

where L≥lij  and L represents the maximum tolerated 

delay by tenant consumers. Then, the total utility 

obtained by tenant user j is 
i=1

M
 bij dij , with the 

financial cost of 
i=1

M
 bij pi(di). Therefore the surplus of 

tenant j can be formulated as follows:  

πj(sj) = 
i=1

M
 bij dij− 

i=1

M
 dij pi(di)   

         =
i=1

M
 bij dij− 

i=1

M
 dij  α+β   

j=1

N
 dij

τ
 , 

where sj=[d1j,⋯,dij,⋯,dMj]
T  is a vector of tenant 

user j’s demands from all the cloud brokers. 
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Static Game and Nash Equilibrium. 
Based on the tenant surplus formulation in the above, 
we can formulate a non-cooperative game among 
competing tenant users. The players in this game are all 
the tenant users. The strategy of each player (e.g., 
tenant user j) is the demand vector of resources 
reserved from different cloud brokers (i.e., sj for tenant 

j). The payoff of each tenant user j is the surplus earned 
from the usage of cloud resources (i.e., πj(sj)). We use 

Nash equilibrium to solve the game. The Nash 
equilibrium of a game is a solution concept in which no 
player can increase his own payoff by unilaterally 
changing its own strategy. The Nash equilibrium can be 
obtained by solving the best response function, which is 
the optimal strategy of one player given the others’ 
strategy choices. That is, the best response function of 
tenant j can be formulated as:  

BRj(S−j)=argmaxsj
πj(S),             (4) 

where S=[dij], ∀1≤i≤M, and 1≤j≤N  denotes 

the strategy matrix of all tenant users and S−j=[dik] 

with i≠j represents the strategy matrix of all tenants 
except tenant j. To this end, we can obtain the Nash 
equilibrium by solving the following equation array:  

∂πj(sj)

∂dij
 = −β τ  

i=1

M
 dij   

j=1

N
 dij

τ−1
 

           = 0.                              (5) 

In the following theorem, we investigate the analytical 
solution of Nash equilibrium for the special case of 
M=1. That is, bij=bj and dij=dj, ∀i. 

THEOREM 1  For the special case of M=1, there 
exists a unique Nash equilibrium given by  

d
*
j =( 

bj−α

β τ Qτ−1− 
Q
τ )+,∀1≤j≤M,  (6) 

where Q= 

 
j=1

N
 bj−α N

β (N+τ)  and (x)  max(x,0). 

Proof. From Equation array 5, we get  

∂πj(sj)

∂dj
 = bj−α−β   

j=1

N
 dj

τ
 

−β τ dj   
j=1

N
 dj

τ−1
 = 0.  

                                                   (7) 

Summing up the left side and the right side of the above 
equations, we have  

j=1

N
 bj−α N−β N   

j=1

N
 dj

τ
−β τ   

j=1

N
 dj

τ
=0. 

Suppose that Q= 
j=1

N
 dj. We can readily get 

Q=  

 
j=1

N
 bj−α N

β (N+τ)

1/τ
.                                  (9) 

Substitute Q into Equation 7, we obtain the unique 
Nash equilibrium:  

dj= 
bj−α

β τ Qτ−1− 
Q
τ .                     (10) 

However, this is on that condition that  

dj= 
bj−α

β τ Qτ−1− 
Q
τ ≥0;                     (11) 

otherwise, the best response of tenant j is dj=0. To sum 

it up, we obtain the unique Nash equilibrium:  

d
*
j =max( 

bj−α

β τ Qτ−1− 
Q
τ ,0). (12) 

Dynamic Game and Stability Analysis. 
In a practical cloud system, one tenant user may not be 
aware of the strategies and surplus of the other tenant 
users. Therefore, each tenant user has to learn others’ 
strategies and pricing behaviors based on the interaction 
history. To this end, we propose distributed learning 
algorithms for dynamic demand adjustments so as to 
gradually achieve Nash equilibrium for competitive 
resource procurements. In tenant demand competition, 
tenant users can adjust the resource demands from 
different cloud brokers towards the most promising 
direction (i.e., the direction of marginal profit function). 
Therefore, the adjustment of the optimal demand level 
is calculated in a dynamic game for tenant j:  

 
(13) 

where dij(t) is the demand of tenant j from cloud broker 

i at time slot t and δj is the strategy updating step size 

(i.e., the learning rate) of tenant j. Γ ( )dij(t)  is the self-

mapping function of the dynamic game. The dynamic 
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game defined by Equation 13 is proposed under the 
notion of bounded rationality where the tenant users 
cannot adapt their strategies to the optimal demand 
levels immediately. 

3. Performance Evaluation 
In this section, we present our evaluation results. We 
consider a cloud system with one cloud broker and two 
tenant users procuring bandwidth from the broker (i.e., 
M=1 and N=2). In the pricing model, we use α=0 and 
β=1. The impact of τ is explored by varying its values. 
By default, we have τ=1. For tenant surplus, we have 
the maximum incurred delay L=30000. The impact of 
network delay is examined by varying lij. 

 
Figure 1: Illustration of Nash equilibrium with two 
tenant users: best response functions. 

 
Figure 2: The impact of learning rate on the 
convergence of the dynamic game. 
We first examine Nash equilibrium and the impact of 
network delay in Fig. 1 for the special case of two 
tenant users. Here, we investigate the impact of network 
delay on the equilibrium demand levels. With the 
decrease of network delay (i.e., better service quality), 
the corresponding tenant user would like to procure 
more resources from the cloud broker. On the other 
hand, the network delay of one tenant user affects the 
other’s procurement of cloud resources. This clearly 
explains the impact of network delay and the 
interactions among tenants for resource procurements, 
when a large number of tenants coexist in the cloud 

system. We also show the trajectories of the 
competitive strategies learning of the tenant users in Fig. 
1 for the special case of δi=0.05 . It shows the 

convergence of the dynamic game in distributed 
learning. Fig. 2 shows that, when learning rate is large 
(e.g., 0.3), the dynamic game may never converge. 

4. Related Work 
Pricing has been discussed for more than a decade by 
computer scientists for network resource allocation [8]. 
Recently, cloud resource pricing is widely adopted as 
the dominant resource allocation scheme in a cloud 
computing environment with multi-tenancy. Therefore, 
there already exist some studies on pricing scheme 
design and tenant resource procurements. Wang et al. 
[9] examine the importance of cloud resource pricing 
from the perspective of economics. Due to the 
coexistence of spot pricing and usage based pricing, 
Wang et al. [10] investigate optimal data center 
capacity segmentation between both pricing schemes 
with the objective of total cloud revenue maximization. 
Niu et al. [11, 12] propose a pricing scheme to better 
leverage the demand correlation among tenant 
consumers with VoD traffic and argue the necessity of 
brokers in a free cloud market. Most recently, Xu et al. 
[13, 14] propose centralized schemes so as to maximize 
the revenue of the cloud provider. Wang et al. further 
discuss optimal resource reservation with multiple 
purchasing options in IaaS clouds in [15]. While the 
above studies acknowledge the dominant role of the 
cloud provider and brokers in pricing, they ignore the 
competitive cloud resource procurements and its impact 
on broker revenue and pricing, which is the key 
problem we aim to solve in this paper. 

5. Conclusion 
In this paper, we explore the problem of competitive 
cloud resource procurements in a cloud broker market. 
We realistically model the pricing scheme of the cloud 
broker and tenant surplus. We propose a non-
cooperative game to model such competitive resource 
procurements. We then conduct equilibrium analysis 
under the assumption of perfect information. To relax 
the assumption of perfect information, we propose the 
adoption of dynamic game to reach Nash equilibrium in 
a distributed manner by using local information only. 
The results revealed insightful observations for 
practical pricing scheme design. In the future, we would 
like to extend our model to the more general case of an 
interrelated market formulated by the cloud provider, 
brokers, and tenant consumers with strategic 
interactions. 
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