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Abstract—In current IaaS cloud markets, tenant consumers
non-cooperatively compete for cloud resources via demand quan-
tities, and the service quality is offered in a best effort manner.
To better exploit tenant demand correlation, cloud brokerage
services provide cloud resource multiplexing so as to earn
profits by receiving volume discounts from cloud providers. A
fundamental but daunting problem facing a tenant consumer
is competitive resource procurements via cloud brokerage. In
this paper, we investigate this problem via non-cooperative game
modeling. In the static game, to maximize the experienced sur-
plus, tenants judiciously select optimal demand responses given
pricing strategies of cloud brokers and complete information of
the other tenants’ demands. We also derive Nash equilibrium of
the non-cooperative game for competitive resource procurements.
Performance evaluation on Nash equilibrium reveals insightful
observations for both theoretical analysis and practical cloud
resource procurements scheme design.

Keywords—Cloud computing, resource allocation, pricing
scheme design, game theory, distributed learning.

I. INTRODUCTION

The Infrastructure-as-a-Service (IaaS) view of cloud com-

puting is widely adopted by several large cloud providers,

which has fundamentally changed the operation of many

industries [1]–[3]. Indeed, large cloud providers such as

Amazon Web Services [4], Windows Azure [5], and Google

App Engine [6] offer Internet-scale distributed computing

facilities, where tenant users can dynamically reserve cloud

resources including CPU, memory, and bandwidth so as to

satisfy their own service requirements [7]. Tenants including

application developers and small startups potentially reduce

their investment risk and operating cost by renting computing

and storage facilities from the cloud, while cloud providers

benefit financially from multiplexing their data center networks

[8]. In such a multi-tenant cloud computing environment,

cloud brokers exploit demand correlation among tenants and

obtain volume discounts from cloud providers via tenant

demand aggregation. Therefore, tenants dynamically procure

resources via cloud brokerage services due to lower offered

price rates. In practice, tenants may be rejected of cloud

services due to the inherent quantity competition among tenant

consumers. In particular, tenant consumers judiciously decide

optimal demand responses via tenant surplus maximization.

Such demand competition, largely unexplored, fundamentally

determines the tenant demand dynamics, which in turn affects

the optimal pricing rules of both cloud brokers and the cloud

provider in an interrelated market.

In this paper, we consider resource procurements from cloud

brokers, and tackle the problem of tenant demand competition

and competitive cloud resource procurements with a realistic

broker pricing policy. In a practical cloud market, resource

demands and prices will be cleared at an equilibrium level,

where tenant consumers maximize their surplus and cloud

brokers optimize the collected revenue given optimal tenant

demand responses. Specifically, we propose a non-cooperative

game to tractably investigate the competition among tenants

for dynamic resource procurements and its impact on broker

revenue and pricing scheme design. In this study of compet-

itive cloud resource procurements, our specific contributions

are three-fold.

In this paper, we build a general game model to realistically

capture broker pricing scheme design. Tenant surplus (i.e.,

tenant utility minus dollar cost) is realistically formulated

to model tenant rationality. We then analytically perform

equilibrium analysis for competitive resource procurements

under the assumption of perfect information. The remainder

of this paper is organized as follows. In Section II, we present

the system model of competitive cloud resource procurements

via cloud brokerage. We propose a non-cooperative game

and perform equilibrium analysis in Section III. Section IV

validates our model with preliminary evaluation results on

Nash equilibrium. In Section V, we articulate recent advances

in cloud resource pricing. Finally, we present conclusions and

future work in Section VI.

II. SYSTEM MODEL

A. Cloud Brokers and Tenants

We consider a cloud system with multiple cloud brokers

and a large number of tenant users. Cloud brokers share cloud

resources such as CPU, memory, and bandwidth with tenant

users as sellers. Tenant users as buyers dynamically procure

cloud resources in units of virtual instances. A virtual instance

is a resource bundle with one single resource type or a bundle

of multiple resources. Throughout this paper, we study virtual

instances as units of commodities sold in such a cloud system.

Spot prices are provided by brokers so as to accommodate
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demand dynamics, which is widely used in realistic cloud

markets, such as SpotCloud [9].

Denote by N the number of tenant users in the cloud system.

The number of cloud brokers is M . The broker i sells the cloud

resources at price rate pi per virtual instance. Each broker

provides services to multiple tenants, the demands of which

depend on both the experienced service quality and the price

charged by the cloud cloud brokers. The service quality of

tenants is dependent on network delay (i.e., transmission delay

due to request routing) and queueing delay (i.e., delay incurred

by waiting for the service of the cloud broker). To this end, the

queueing delay is implicitly considered in the pricing policy

of each cloud broker, which will be elaborated in Section III.

We explicitly consider network delay in the utility function of

tenant users.

B. Tenant Competition in an Oligopoly Market

We approach the problem of dynamic cloud resource pro-

curements via noncooperative game modeling of tenant users.

In microeconomics, oligopoly describes a situation in which

a small number of companies (i.e., oligopolists) dominate the

entire market. This is what happens in current cloud markets,

where several large companies such as Amazon and Microsoft

dominantly occupy the market share with few cloud brokers.

Under this market structure, the few cloud brokers own the

control of cloud resource prices to tenant consumers. The de-

cision making of each tenant user is to reserve cloud resources

properly so as to maximize their individual benefits, which is

quantified by tenant surplus in our study. Under the assumption

of observable prices of different cloud brokers, the tenant

users compete with each other and make demand requests in a

noncooperative manner. The competition among tenant users

is in terms of the resource demand, which is determined by

the utility obtained from requested virtual instances and the

price charged by cloud brokers. Each tenant user dynamically

learns the equilibrium by adapting the amount of reserved

cloud resources to the strategies of other tenant users. Indeed,

tenants may also obtain cloud resources from cloud providers

directly, but here we focus our discussions on cloud brokers

due to the lower offered price rates [10].

III. TENANT COMPETITION FOR CLOUD RESOURCE

PROCUREMENTS AND EQUILIBRIUM ANALYSIS

In this section, we build a game theoretic model for competi-

tive resource procurements among tenant users. We first define

the pricing scheme of cloud brokers and formulate our tenant

surplus defintion. Based on this, we propose a game theoretic

formulation to model the noncooperative competition among

tenant users. However, this static game assumes that each

tenant user possesses perfect information about strategies and

surplus of all the other tenant users. To this end, we propose

a dynamic game formulation, by relaxing the assumption

of perfect information, so as to provide realistic resource

procurement algorithms for tenant consumers.

A. Pricing Model of Data Centers and Tenant Surplus

The commodity sold in the cloud market is in the units of

virtual instances. To model prices offered by cloud broker i,
we consider a realistic pricing function:

pi(di) = α+ β ·
⎛
⎝ N∑

j=1

dij

⎞
⎠

τ

, ∀i ∈ {1, · · · ,M}, (1)

where dij is the amount of resources reserved by tenant j
from cloud broker i, and di = [di1, · · · , dij , · · · , diN ]T is the

vector of all resource demands at broker i. This practically

reflects the situation that the price increases with the growth

of aggregate demand at one cloud broker due to the limited

amount of cloud resources reserved from cloud providers in

the interrelated market. With the surge of resource prices, the

demand will decrease accordingly. In this manner, the demand

can be maintained at an equilibrium level so as to provide

sufficient service quality as measured by the queueing delay.

Denote by lij the network delay due to tenant j’s resource

procurements from cloud broker i. L represents the maximum

experienced network delay in the entire cloud system. Then,

the utility of unit virtual instance can be modeled as

bij = ln (1 + (L− lij)) , (2)

where L ≥ lij and L represents the maximum tolerated delay

by tenant consumers. Then, the total utility obtained by tenant

user j is
∑M

i=1 bij · dij , with the financial cost of
∑M

i=1 bij ·
pi(di). Therefore the surplus of tenant j can be formulated as

follows:

πj(sj) =
M∑
i=1

bij · dij −
M∑
i=1

dij · pi(di)

=
M∑
i=1

bij · dij −
M∑
i=1

dij ·
⎛
⎝α+ β ·

⎛
⎝ N∑

j=1

dij

⎞
⎠

τ⎞
⎠
(3)

where sj = [d1j , · · · , dij , · · · , dMj ]
T is a vector of tenant

user j’s demands from all the cloud brokers.

B. A Static Game and Nash Equilibrium

Based on the tenant surplus formulation in the above, we

can formulate a noncooperative game among competing tenant

users. In a static game, the most fundamental three elements

are players, the strategy of each player, and the payoff of each

player. The players in this game are all the tenant users. The

strategy of each player (e.g., tenant user j) is the demand

vector of resources reserved from different cloud brokers (i.e.,

sj for tenant j). The payoff of each tenant user j is the surplus

earned from the usage of cloud resources (i.e., πj(sj)). We use

Nash equilibrium to solve the game.

The Nash equilibrium of a game is a solution concept in

which no player can increase his own payoff by unilaterally

changing its own strategy. The Nash equilibrium can be

obtained by solving the best response function, which is

the optimal strategy of one player given the others’ strategy
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choices. That is, the best response function of tenant j can be

formulated as:

BRj(S−j) = argmax
sj

πj(S), (4)

where S = [dij ], ∀1 ≤ i ≤ M, and 1 ≤ j ≤ N denotes the

strategy matrix of all tenant users and S−j = [dik] with i �= j
represents the strategy matrix of all tenants except tenant j.

Denote by S∗ = {s∗1, · · · , s∗j , · · · , s∗N} the Nash equilib-

rium of the noncooperative resource procurement game. Then,

we have:

s∗j = BRi(S
∗
−j), ∀j. (5)

where the Nash equilibrium is given by the best response

function. To this end, we can obtain the Nash equilibrium

by solving the following equation array:

∂πj(sj)

∂dij
= bij − α− β ·

⎛
⎝ N∑

j=1

dij

⎞
⎠

τ

−β · τ ·
M∑
i=1

dij ·
⎛
⎝ N∑

j=1

dij

⎞
⎠

τ−1

= 0. (6)

The solution S∗ of the above equations is a Nash equi-

librium. In practice, the tenant consumers set their optimal

demand levels using the Nash equilibrium, given the pricing

policies of the cloud broker. When all the strategies among

all the tenant users are available in a centralized manner, the

Nash equilibrium can be solved numerically by:

min
S�0

N∑
j=1

|sj −BRj(S−j)|, (7)

where |x| is the norm of vector x. That is, the Nash equilib-

rium can be solved by minimizing the sum of the differences

between dij and the corresponding value obtained via best

response functions. The closer to 0 the objective function is,

the more accurate of the numerical solution.
In the following theorem, we investigate the analytical

solution of Nash equilibrium for the special case of M = 1.

That is, bij = bj and dij = dj , ∀i.
THEOREM 1. For the special case of M = 1, there exists

a unique Nash equilibrium given by

d∗j = (
bj − α

β · τ ·Qτ−1
− Q

τ
)+, ∀1 ≤ j ≤M, (8)

where Q =
∑N

j=1 bj−α·N
β·(N+τ) and (x)+ = max(x, 0).

Proof. From Equation array 6, we get

∂πj(sj)

∂dj
= bj − α− β ·

⎛
⎝ N∑

j=1

dj

⎞
⎠

τ

−β · τ · dj ·
⎛
⎝ N∑

j=1

dj

⎞
⎠

τ−1

= 0. (9)

Summing up the left side and the right side of the above

equations, we have

N∑
j=1

bj − α ·N − β ·N ·
⎛
⎝ N∑

j=1

dj

⎞
⎠

τ

−β · τ ·
⎛
⎝ N∑

j=1

dj

⎞
⎠

τ

= 0. (10)

Suppose that Q =
∑N

j=1 dj . We can readily get

Q =

(∑N
j=1 bj − α ·N
β · (N + τ)

)1/τ

. (11)

Substitute Q into Equation 9, we obtain the unique Nash

equilibrium:

dj =
bj − α

β · τ ·Qτ−1
− Q

τ
. (12)

However, this is on that condition that

dj =
bj − α

β · τ ·Qτ−1
− Q

τ
≥ 0; (13)

otherwise, the best response of tenant j is dj = 0. To sum it

up, we obtain the unique Nash equilibrium:

d∗j = max(
bj − α

β · τ ·Qτ−1
− Q

τ
, 0). (14)

IV. PERFORMANCE EVALUATION

In this section, we present our evaluation results of our

proposed game model and learning algorithms in our dynamic

game.

A. Setup

We consider a cloud system with one cloud broker and

two tenant users procuring virtual instances from the broker

(i.e., M = 1 and N = 2) so as to get clear insights

about competitive cloud resource procurements. For the cloud

pricing model, we use α = 0 and β = 1.

B. Equilibrium Analysis

We first examine Nash equilibrium and the impact of

network delay in Fig. 1 for the special case of two tenant users.

In our game model, the best response of one tenant consumer

is a linear function of the strategy of the other tenant user. The

Nash equilibrium can be calculated by the intersection point

of the best response functions of the two tenant users. Here,

we investigate the impact of network delay on the equilibrium

demand levels. With the decrease of network delay (i.e., better

service quality), the corresponding tenant user would like to

procure more resources from the cloud broker. On the other

hand, the network delay of one tenant user affects the other’s

procurement of cloud resources. This clearly explains the

impact of network delay and the interactions among tenants

for resource procurements, when a large number of tenants

coexist in the cloud system.
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Fig. 1: Illustration of Nash equilibrium with two tenant users: best response functions.

V. RELATED WORK

Pricing has been discussed for more than a decade by com-

puter scientists for network resource allocation [11]. Recently,

cloud resource pricing is widely adopted as the dominant

resource allocation scheme in a cloud computing environment

with multi-tenancy. Therefore, there already exist some studies

on pricing scheme design and tenant resource procurements.

Wang et al. [12] examine the importance of cloud resource

pricing from the perspective of economics. Due to the co-

existence of spot pricing and usage based pricing, Wang et
al. [13] investigate optimal data center capacity segmentation

between both pricing schemes with the objective of total cloud

revenue maximization. Niu et al. [14], [15] propose a pricing

scheme to better leverage the demand correlation among tenant

consumers with VoD traffic and argue the necessity of brokers

in a free cloud market. Most recently, Xu et al. [17] propose

centralized schemes so as to maximize the revenue of the

cloud provider. Wang et al. [10] investigate dynamic resource

reservation via cloud brokers. Wang et al. further discuss

optimal resource reservation with multiple purchasing options

in IaaS clouds in [18]. While the above studies acknowledge

the dominant role of the cloud provider and brokers in pricing,

they ignore the competitive cloud resource procurements and

its impact on broker revenue and pricing.

VI. CONCLUDING REMARKS

In this paper, we explore the problem of competitive cloud

resource procurements in a cloud broker market. We realisti-

cally model the pricing scheme of the cloud broker and tenant

surplus. We propose a noncooperative game to model such

competitive resource procurements. We then conduct equilib-

rium analysis under the assumption of perfect information.

To relax the assumption of perfect information, we propose

the adoption of dynamic game to reach Nash equilibrium in a

distributed manner by using local information only. The results

revealed insightful observations for practical pricing scheme

design. In the future, we would like to extend our model to

the more general case of an interrelated market formulated by

the cloud provider, brokers, and tenant consumers.
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