269 research outputs found

    Finite-width feed and load models

    Get PDF
    We demonstrate a new method of applying the feed model for the method of moments (MoM) formulation for the electric field integral equation (EFIE). The model is based around a previously reported magnetic ribbon current model which is accurate and allows for a finite width of the feed port. However, with proper approximations, one can reduce the formulation such that the magnetic field operator can be removed in order to simplify computations arising from the curl of the dyadic Green's function and its singularities. We show here that the new feed model can also be used to model a lumped element. © 1963-2012 IEEE.published_or_final_versio

    Finite-width gap excitation and impedance models

    Get PDF
    In this paper, we present a new method for the feed model for the method of moments (MoM). It is derived from a more accurate model with the realistic size of the excitation, in order to replace the commonly-used delta-gap excitation model. This new model is formulated around the electric field integration equations (EFIE) where the terms for magnetic current and magnetic field can be removed. Hence it is much simpler to implement and reduces the numerical complexity. In addition, a variational formulation is derived to provide second order accuracy of the input admittance calculation. Moreover, this new formulation can be easily extended such that one can insert passive load elements of finite size onto the distributive network, without complicated modification of the MoM analysis. This allows simulation of many realistic networks which include load elements such as resistors, capacitors and inductors. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA., 3-8 July 2011. In IEEE APSURSI Digest, 2011, p. 1297-130

    Segregação de recursos por diferentes espécies de morcegos (Mammalia: Chiroptera) na Reserva Biológica de Sooretama

    Get PDF
    Em ecologia, uma das ideias mais importantes é o princípio da exclusão competitiva, ou Lei de Gause, que afirma que duas espécies competindo pelos mesmos recursos não podem coexistir de modo estável se todos os outros fatores ecológicos forem constantes. Um dos competidores vai sobrepor-se ao outro, levando a um deslocamento evolutivo, morfológico ou comportamental, a um nicho ecológico diferente, ou mesmo à extinção. O horário de atividade diferenciado pode ser um importante fator para evitar competição por espécies proximamente relacionas, sendo assim motivo de interesse nos estudos de exclusão competitiva. O ciclo lunar é importante fator modulador de mamíferos noturnos, podendo também exercer influência na partilha de recursos, onde espécies relacionadas podem responder de diferentes maneiras à iluminação lunar. Analisar as diferenças no horário de atividade de espécies próximas de morcegos trará respostas sobre como uma comunidade partilha a disponibilidade de alimento sobre o critério de tempo. O objetivo foi testar a hipótese de que espécies próximas de morcegos usam o horário de atividade como fator de segregação de recursos. O estudo se deu na Reserva Biológica de Sooretama, importante fragmento de Mata Atlântica ombrófila densa localizada numa região plana no norte do estado do Espírito Santo. A hipótese foi descartada para os grupos de morcegos frugívoros, em análises intra e intergenéricas. Porém, para grupos de insetívoros e nectarívoros, a hipótese de segregação de recursos pelo variável tempo foi sustentada por todos os testes e análises, levando a crer que seja um fator importante nesses grupos

    Generalized modal expansion of electromagnetic field in 2-D bounded and unbounded media

    Get PDF
    A generalized modal expansion theory is presented to investigate and illustrate the physics of wave-matter interaction within arbitrary two-dimensional (2-D) bounded and unbounded electromagnetic problems. We start with the bounded case where the field excited by any sources is expanded with a complete set of biorthogonal eigenmodes. In regard to non-Hermitian or nonreciprocal problems, an auxiliary system is constructed to seek for the modal-expansion solution. We arrive at the unbounded case when the boundary tends to infinity or is replaced by the perfectly matched layer (PML). Modes are approximately categorized into two types: trapped modes and radiation modes, which respond differently to environment variations. When coupled with the source, these modes contribute to the modal-expansion solution with different weights, which leads to a reduced modal representation of the excited field in some geometries. © 2002-2011 IEEE.published_or_final_versio

    Compact Nonlinear Yagi-Uda Nanoantennas

    Get PDF
    Nanoantennas have demonstrated unprecedented capabilities for manipulating the intensity and direction of light emission over a broad frequency range. The directional beam steering offered by nanoantennas has important applications in areas including microscopy, spectroscopy, quantum computing, and on-chip optical communication. Although both the physical principles and experimental realizations of directional linear nanoantennas has become increasingly mature, angular control of nonlinear radiation using nanoantennas has not been explored yet. Here we propose a novel concept of nonlinear Yagi-Uda nanoantenna to direct second harmonic radiation from a metallic nanosphere. By carefully tuning the spacing and dimensions of two lossless dielectric elements, which function respectively as a compact director and reflector, the second harmonic radiation is deflected 90 degrees with reference to the incident light (pump) direction. This abnormal light-bending phenomenon is due to the constructive and destructive interference between the second harmonic radiation governed by a special selection rule and the induced electric dipolar and magnetic quadrupolar radiation from the two dielectric antenna elements. Simultaneous spectral and spatial isolation of scattered second harmonic waves from incident fundamental waves pave a new way towards nonlinear signal detection and sensing.published_or_final_versio

    Metabolic analysis of the interaction between plants and herbivores

    Get PDF
    Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the ‘metabolic interface’. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.

    Lasp-1 Regulates Podosome Function

    Get PDF
    Eukaryotic cells form a variety of adhesive structures to connect with their environment and to regulate cell motility. In contrast to classical focal adhesions, podosomes, highly dynamic structures of different cell types, are actively engaged in matrix remodelling and degradation. Podosomes are composed of an actin-rich core region surrounded by a ring-like structure containing signalling molecules, motor proteins as well as cytoskeleton-associated proteins

    Nuclear localization and cytosolic overexpression of LASP-1 correlates with tumor size and nodal-positivity of human breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>LIM and SH3 protein 1 (LASP-1), initially identified from human breast cancer, is a specific focal adhesion protein involved in cell proliferation and migration, which was reported to be overexpressed in 8–12 % of human breast cancers and thought to be exclusively located in cytoplasm.</p> <p>Methods</p> <p>In the present work we analyzed the cellular and histological expression pattern of LASP-1 and its involvement in biological behavior of human breast cancer through correlation with standard clinicopathological parameters and expression of c-erbB2 (HER-2/neu), estrogen- (ER) and progesterone-receptors (PR). For this purpose immunohistochemical staining intensity and percentage of stained cells were semi-quantitatively rated to define a LASP-1 immunoreactive score (LASP-1-IRS). LASP-1-IRS was determined in 83 cases of invasive ductal breast carcinomas, 25 ductal carcinomas in situ (DCIS) and 18 fibroadenomas. Cellular LASP-1 distribution and expression pattern was visualized by immunofluorescence and confocal microscopy and assessed through separate Western blots of nuclear and cytosol preparations of BT-20, MCF-7, MDA-MB231, and ZR-75/1 breast cancer cells.</p> <p>Results</p> <p>Statistical analysis revealed that the resulting LASP-1-IRS was significantly higher in invasive carcinomas compared to fibroadenomas (p = 0.0176). Strong cytoplasmatic expression of LASP-1 was detected in 55.4 % of the invasive carcinomas, which correlated significantly with nuclear LASP-1-positivity (p = 0.0014), increased tumor size (p = 0.0159) and rate of nodal-positivity (p = 0.0066). However, levels of LASP-1 expression did not correlate with average age at time point of diagnosis, histological tumor grading, c-erbB2-, ER- or PR-expression.</p> <p>Increased nuclear localization and cytosolic expression of LASP-1 was found in breast cancer with higher tumor stage as well as in rapidly proliferating epidermal basal cells. Confocal microscopy and separate Western blots of cytosolic and nuclear preparations confirmed nuclear localization of LASP-1.</p> <p>Conclusion</p> <p>The current data provide evidence that LASP-1 is not exclusively a cytosolic protein, but is also detectable within the nucleus. Increased expression of LASP-1 in vivo is present in breast carcinomas with higher tumor stage and therefore may be related with worse prognosis concerning patients' overall survival.</p

    Dynamic phenotypic heterogeneity and the evolution of multiple RNA subtypes in Hepatocellular Carcinoma: the PLANET study

    Get PDF
    Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous studies have focused mainly on the genomic alterations without exploring phenotypic (transcriptomic and immune) heterogeneity. Using one of the largest prospective surgical cohorts for Hepatocellular Carcinoma (HCC) with multi-region sampling, we sequenced whole genomes and paired transcriptomes from 67 HCC patients (331 samples). We found that while genomic ITH was rather constant across TNM stages, phenotypic ITH had a very different trajectory and quickly diversified in stage II patients. Most strikingly, 30% patients were found to contain more than one transcriptomic subtype within a single tumor. Such phenotypic ITH was found to be much more informative in predicting patient survival than genomic ITH and explains the poor efficacy of single-target systemic therapies in HCC. Taken together, we not only revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in HCC, but also highlighted the importance of studying phenotypic evolution across cancer types
    • …
    corecore