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Abstract 

Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous 

studies have focused mainly on the genomic alterations without exploring phenotypic 

(transcriptomic and immune) heterogeneity. Using one of the largest prospective 

surgical cohorts for Hepatocellular Carcinoma (HCC) with multi-region sampling, we 

sequenced whole genomes and paired transcriptomes from 67 HCC patients (331 

samples). We found that while genomic ITH was rather constant across TNM stages, 

phenotypic ITH had a very different trajectory and quickly diversified in stage II 

patients. Most strikingly, 30% patients were found to contain more than one 

transcriptomic subtype within a single tumor. Such phenotypic ITH was found to be 

much more informative in predicting patient survival than genomic ITH and explains 

the poor efficacy of single-target systemic therapies in HCC. Taken together, we not 

only revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in 

HCC, but also highlighted the importance of studying phenotypic evolution across 

cancer types.  
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Introduction 

Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality with 

more than 50% of the cases from Asia 
1
. While surgical resection may be curative in 

patients with early stage HCC 
2
, recurrences are common 

3,4
. Several recent studies 

have characterized the genomic landscape 
5-8

 and identified molecular subtypes as 

well as potential therapeutic targets for HCC 
9,10

. However, no predictive genomic 

biomarker for systemic treatment has been clinically validated 
11

. Currently approved 

first-line therapies for advanced HCC, namely lenvatinib and sorafenib, confer overall 

objective response rates (ORR) of 24% and 9.2% and median OS of 13.6 months and 

12.3 months respectively 
12

. While combination therapy with atezolizumab (PD-L1 

antibody) plus bevacizumab (vascular endothelial growth factor A/VEGF-A inhibitor) 

has shown increased efficacy with a reported ORR of 27% in the recent IMBrave150 

trial 
13

, the best systemic therapies for HCC confer ORR and OS that compare poorly 

with treatments for other solid organ cancer.    

Intra-tumor heterogeneity (ITH) is central to tumor evolution and can contribute 

significantly to the poor treatment response in HCC 
14

. Exploratory studies on small 

retrospective cohorts have examined the landscape of genomic ITH 
15-22

 and an 

intermediate level of DNA ITH was found when comparing HCC with other tumor 

types 
14

. However, most previous studies have focused mainly on the genomic 

changes in the DNA without systematic exploration of the phenotypic evolution. 

Since phenotypic changes often accompany disease progression, linking multi-layer 

(i.e. phenotypic and genomic) ITH to the clinical trajectory can pave important basis 

for patient treatment and prognosis, but has not been explored in a prospective cohort 

for HCC.  

The Precision Medicine in Liver Cancer across an Asia-Pacific NETwork (PLANET) 

is a prospective cohort studying the impact of ITH on the clinical trajectory of 

surgically resected HCC (NCT03267641, Methods). We leveraged on clinical 
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guidelines for HCC in the Asia-Pacific which recommend surgical resection over a 

broad pathological range 
23,24

,providing a unique opportunity to investigate the impact 

of ITH on the clinical trajectory of resected HCC across AJCC (American Joint 

Committee on Cancer) pathological stages 
25

. Here we report our genomic analysis of 

ITH in HCC for 67 patients from four countries in the Asia-Pacific. Through 

multi-region sampling of surgically resected HCC and whole genome sequencing of 

331 samples, we found that while DNA ITH stays constant across pathological TNM 

stages, transcriptome and immune ITH have a rapid increase in ITH in stage II 

patients. Strikingly, 30% patients were found to contain more than one RNA subtype 

within a single tumor (i.e. mixed subtypes), and this occurred in tandem with the 

transition from less aggressive phenotypes (e,g. low cell cycle) in early TNM stage 

tumors to the more aggressive phenotypes (e.g. upregulated cell cycle) in later TNM 

stage HCC. This phenotypic heterogeneity can significantly reduce the efficacy of 

monotherapies targeting a small number of lesions, but may confer synergy when 

combination therapies targeting different dimensions of tumor phenotypes are 

employed. Through integrative analysis, multiple ITH features, in particular 

phenotypic ITH, were found to be more informative than genomic ITH in predicting 

patient prognosis. For the first time, we revealed an unprecedentedly dynamic 

landscape of phenotypic heterogeneity in HCC, highlighting the importance of 

studying phenotypic evolution and novel therapies contending a vibrant landscape of 

tumor evolution in HCC.   

Results 

Patient recruitment and clinical phenotypes of the PLANET cohort 

Through the Asia-Pacific Hepatocellular Carcinoma (AHCC) trials group 
26

, we  

enrolled 67 HCC patients from four Asia-Pacific countries (Singapore, Thailand, 

Malaysia and Philippines, Supplementary Table 1a, Supplementary Note 1) with 

different ethnic backgrounds: Chinese (n=46), Malay (n=7), Thai (n=4), Indonesian 
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(n=5), Burmese (n=3), Cambodian (n=1) and sub-continental Indian (n=1). As a 

prospective surgical cohort, patients are enriched for early stage (49.25% in stage I) 

with intermediate grade (Edmondson grade II and III, Supplementary Fig.1). More 

than 60% patients are viral positive cases (59.7% HBV+, 4.5% HCV+) with varying 

degrees of cirrhosis and fibrosis (Metavir score, 20.9% with no fibrosis and 35.8% 

with cirrhosis, Supplementary Fig. 1). A full description of patient cohort and clinical 

phenotypes can be found in Supplementary Note 1 and Supplementary Fig. 1.  

The genomic landscape of the PLANET cohort 

To survey the degree of tumor heterogeneity, multiple regions (2-11 sectors per tumor 

depending on size of tumor)  were harvested using an established grid sampling 

protocol (Fig. 1a, Methods) 
21

. In total, we sequenced 331 samples (264 tumors and 

67 adjacent normal tissues) of which 318 samples were subjected to whole genome 

sequencing (WGS; average depth of 46.7X) and 13 samples were subjected to whole 

exome sequencing (WES; average depth of 85X, Supplementary Table 1b). 

By comparing tumor sectors against their adjacent normal, we characterized somatic 

mutations, driver mutations, mutational signatures as well as copy number variations 

in the PLANET cohort. Even though basic genomic features of HCC have been 

investigated in several recent studies 
5-8

, multi-regional sampling provides an 

important approach timing genomic changes. We summarized major findings here 

and presented the details in Supplementary Note 2. Firstly, across the 67 patients, 

tumor mutation burden (TMB) ranged from 0.5 to 16.3 mut/Mb (median 3.967 

mut/Mb, Fig. 1b) with limited variations within each tumor (Supplementary Fig. 2), 

but large differences between patients. Secondly, by integrating 1,349 publicly 

available HCC genomes, we identified 62 driver genes in HCC using several 

statistical approaches (Supplementary Note 3) with 48 of the driver genes found in the 

current cohort (Fig. 1b, Supplementary Fig. 3). While common driver genes such as 

TP53 and CTNNB1 were often shared across all sectors of the same patient (defined 
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as truncal events) across many patients, low frequency drivers such as FRG1 and 

ARID1B tended to be non-truncal (Fig. 1b, Supplementary Figs. 3 and 4). These 

observations suggest that common driver mutations often arise early in HCC, rare 

driver mutations tend to acquired late during tumorigenesis (Fig. 1c). Thirdly, we 

identified 13 COSMIC signatures in the PLANET cohort (Supplementary Note 2, 

Supplementary Fig. 5, Supplementary Table 1c). Signatures related to environmental 

stimuli such as aristolochic acid (AA, SBS22), smoking (SBS4) and aflatoxin B1 

(SBS24) are more frequent in the early(truncal) part of the evolution (Fig. 1d), 

implying their higher activity in tumor initiation (Supplementary Fig. 5). Lastly, 

arm-level copy number alterations (CNAs) were shared across multiple sectors of the 

same patient (Fig. 1c, Supplementary Fig. 6a, Supplementary Table 1d) 
6
, suggesting 

that large chromosomal events are early events in the history of tumorigenesis 
27

. 

However, detailed inspection of focal CNAs revealed that a significant proportion of 

focal CNAs were subclonal in many patients, driving further diversification in each 

tumor (Methods, Supplementary Note 2, Supplementary Fig. 6b, Supplementary 

Table 1e). In summary, the PLANET cohort provided a unique resource to time 

genomic changes and revealed many late mutational events in the genetic 

diversification of HCC. 

Subclonal drivers empower local adaptation in HCC  

Based on the proportion of shared mutations (Fig. 2a), we calculated the degree of 

tumor heterogeneity for all patients. Across the cohort, we observed a wide range of 

ITH in DNA ranging from homogeneous tumors (late diversification) to extremely 

heterogeneous tumors (early diversification) (Fig. 2a, Supplementary Fig. 7, 

Supplementary Table 2a). High levels of ITH suggests that sampling additional 

sectors will significantly increase the detected variability (Fig. 2b) and a single biopsy 

sample will often under-represent the genomic landscape of a patient’s tumor.  
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The unique grid sampling strategy employed in this work allowed us to study the 

spatial organization of tumor heterogeneity (Fig. 1a). Previous studies in colorectal 

cancers (CRC) found that subclones within a tumor often distributed in a spatially 

variegated manner and spatial mixing is a hallmark of cancer progression from 

adenoma to carcinoma
28,29

. In order to test the presence of spatial mixing, we 

compared physical locations of the tumor sectors against their phylogenetic 

relationship (Fig. 2c, Methods) 
30

. Surprisingly, only a minor proportion of HCC 

showed some levels of spatial mixing (SM, n=10 or 20.4% among 49 patients with at 

least three sectors, Supplementary Fig.7, Supplementary Table 2b), while for the 

majority of the tumors, the branching pattern closely matched the physical locations 

of tumor sectors (e.g. ITH 52 as an example, Fig. 2d). In order to further dissect the 

spatial organization of ITH in HCC, we applied population genetic 
31

 as well as clonal 

deconvolution methods 
32,33

 across the patients with no spatial mixing (n=39). We 

found: 1) when we measured the genetic divergence between sectors with varying 

levels of physical separation, we found that physically proximal sectors were also 

genetically more similar (Fig. 2e, p-value=1.2×10
-120

), a pattern often known as 

Isolation-By-Distance (IBD) in Evolutionary Genetics 
31

, and 2) a clear linear 

relationship between the physical distance of the sectors and their clonal 

compositional distance (e.g. for patient 52 in Fig. 2f and 2g, Supplementary Fig. 7) 

32,33
. Taken together, spatial heterogeneity in HCC segregated in an IBD manner and 

spatial mixing is uncommon in HCC(Supplementary Note 4, Supplementary Fig. 7). 

Since spatial mixing is not associated with tumor progression in HCC, we 

investigated if other evolutionary forces may be driving tumor progression. A few 

recent studies have described non-neutral evolution across a number of cancer types 

including lung and colon cancers 
34,35

, but the situation in HCC remained unknown 
35

. 

Since many driver mutations were private to subsets of tumor sectors (Fig. 1b) and 

may drive tumor progression in these tumors via natural selection (i.e. adaptive 

evolution), we thus explicitly tested the evidence of non-neutral evolution comparing 
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samples with subclonal driver mutations against their sister samples without private 

driver mutations (Fig. 2h, Supplementary Table 2c). Using the neutrality test 

comparing the variant allele frequency distribution (i.e. site frequency spectrum or 

SFS) against the prediction from an exponentially growing population 
34

, we found 

that samples with private driver mutations tend to have poor fit to the neutral 

expectation (Fig. 2i and p-value=0.0114), indicating that subclonal drivers are driving 

adaptive evolution in many tumors. Taken together, we revealed a unique spatial 

organization of heterogeneity (i.e. IBD) with significantly under-appreciated amount 

of adaptive evolution in HCC.  

Mixed transcriptomic subtypes in HCC and their evolutionary trajectory 

The genomic analysis revealed unique evolutionary trajectory at the DNA level, 

however, it remained unknown how genomic ITH can affect phenotypic evolution 

15-22
. Earlier studies have described several transcriptomic subtypes with distinctive 

clinical and molecular features in HCC 
9,36,37

. To dissect the landscape of 

transcriptomic ITH in HCC, we obtained transcriptomic data from the same sectors of 

the tumor with WGS (n=55 patients or 198 samples). Using the non-negative matrix 

factorization (NMF) algorithm, we identified three RNA subtypes (C1-3; Fig. 3a, 

Methods, Supplementary Table 3a). Gene set enrichment analysis showed that 

samples belonging to the C1 subtype (n=84) were enriched for metabolic pathways 

typical of normal liver function and showed upregulation of pathways associated with 

better overall survival (Fig. 3b). In contrast, samples belonging to the C2 (n=66) and 

C3 subtypes (n= 48) showed up-regulation of cell-cycle related pathways and 

down-regulation of several metabolic pathways (Fig. 3b). Driver genes such as 

CTNNB1 mutations are enriched in C2 subtype, while TERT mutations are deficient 

in the C3 subtype. In general, C1 subtype is enriched for early TNM stage patients, 

while C2/C3 subtypes were more common in later stage patients (Fig. 3c, 

p-value=0.029). When we compare RNA subtypes from the PLANET with public 
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cohorts, we found very good concordance with two Asian cohorts (Fig. 3d, 

Supplementary Fig. 8).  

Inspecting RNA subtype distributions across patients, 38 of our patients had tumor 

sectors consisting of a single RNA subtype (i.e. 18 C1, 11 C2 and 9 C3). Surprisingly, 

the other 17 patients had coexistence of multiple RNA subtypes across different 

sectors (i.e. mixed subtypes) (Fig. 3e, Supplementary Table 3a) and these sectors 

located very far away in the transcriptomic space (Fig. 3f). Specifically, we observed 

7 patients with coexisting C1 and C2 subtype, 7 patients with coexisting C1 and C3 

subtypes, and 2 patients with coexisting C2 and C3 subtype and 1 patient who had all 

three subtypes within the same tumor (Fig. 3e). The presence of multiple subtypes 

poses a fundamental question of what evolutionary forces might have led to the 

coexisting subtypes. One possible reason might be the higher tumor heterogeneity at 

the DNA level. When we correlated the degree of RNA ITH with DNA ITH, we 

observed a significant correlation (p-value= 0.0019, Fig. 3g, Supplementary Table 3b) 

controlling for co-variates such as tumor purity (Supplementary Fig. 9). However, 

DNA ITH only contributed a fraction of the transcriptomic heterogeneity (Spearman’s 

rho=0.42), suggesting other forces could be co-driving the phenotypic evolution in 

HCC (see discussions).  

In a rapidly expanding population, different clones can drive diversification at the 

later stage of tumorigenesis, leading to multiple lineages at the time of diagnosis (aka 

the branched evolution model) 
38

. Under this model, the degree of tumor 

heterogeneity will be higher in advanged-stage tumors. Strikingly, when we stratified 

our patients by their TNM stages, we observed higher RNA ITH in TNM stage II 

tumors (Fig. 3h, p-value=0.036). This pattern is consistent when we calculated RNA 

ITH using different subsets of the transcriptome (e.g. genes positively correlated with 

tumor purity, Supplementary Figure 10). Since patients with mixed subtypes often 

have much higher RNA heterogeneity (Fig. 3i, p-value=0.0024), mixed subtype 

patients were also slightly enriched in stage II patients (Fig. 3j, p-value=0.07). Given 
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that C2 and C3 tend to be more dominant in later stage tumors (Fig. 3c), mixed 

subtype tumors may reflect the transitional phase where multiple RNA subtypes 

coexist in the same tumor as the more aggressive phenotypes (i.e. C2 and C3) become 

dominant in the tumor during disease progression. Interestingly, we found no 

differences in the degree of DNA ITH across stages (Fig. 3h) and only slight increase 

in DNA ITH in tumors with mixed subtypes (Fig. 3i, p-value=0.053), suggesting that 

DNA ITH may only contribute partially to the phenotypic evolution in HCC.  

Mixed immune subtypes and the correlation between RNA and immune ITH 

In order to understand the evolution of the immune microenvironment, we estimated 

the immune cell composition within a sample and clustered tumor samples into 

“immunologically hot” and “immunologically cold” tumors (Fig. 4a, Supplementary 

Table 4a) 
39,40

. Interestingly, while majority of the tumors were either 

immunologically hot (n=19) or cold (n=18), a significant proportion (n=18, 

proportion=33%) of the patients were also immunologically mixed (Fig. 4a). Using 

estimated immune compositions, we calculated the degree of immune heterogeneity 

and correlated immune ITH with the heterogeneity at the DNA and RNA levels 

(Supplementary Table 4b). Interestingly, a significant correlation was observed 

between immune ITH and genomic ITH, and the correlation is stronger between RNA 

and immune ITH (Fig. 4b and 4c) even when we calculate RNA ITH using genes 

unrelated to immune genes (Supplementary Fig. 11). With immunohistochemistry 

(IHC) staining, we were able to confirm that transcriptomically hot tumors indeed 

showed higher immune infiltration (Supplementary Fig. 12) and that genomic ITH 

correlate with immune ITH with varying degree of significance (Supplementary Fig. 

13). 

When we compared the degree of immune ITH across patients of different tumor 

stages, we found that stage II tumors also showed the highest levels of immune ITH 

(Fig. 4d, p-value=0.05). When we calculate the GEP score, a pan-cancer predictor for 
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the response to immune checkpoint blockade (ICB) 
41

, stage II patients also had a 

higher variance in the GEP score (Fig. 4e, p-value=0.033, also see later section). In 

summary, immune ITH had strong correlation with genomic ITH and attained the 

highest level in stage II patients.  

Other layers of ITH and their correlation with genomic ITH 

One important somatic event for HCC is viral integration. Using BATVI
42

, a powerful 

tool for HBV viral integration, we found 26 patients from 37 viral positive patients 

had viral integrations. Two of the patients had integrations only in the adjacent normal 

tissue. Among the 24 patients with integration in the tumor, we found that a 

significant proportion of the integrations, especially those in the hotspot regions 

around TERT and KMT2B (MLL4), were often truncal events happened in the early 

history of tumorigenesis (Supplementary Fig. 14). When we calculated integration 

ITH across the patients, we found that heterogeneity in viral integration significantly 

correlated with DNA ITH (p-value=0.03), but not so significantly with RNA and 

immune ITH (Supplementary Fig. 14), suggesting that viral integration is an active 

process along the history of genomic (DNA) changes for HCC with minimum 

changes to the phenotypic heterogeneity. 

Similar to viral integration, when we inferred telomere length as well as fusion gene 

ITH, we also found significant correlations between genomic ITH and telomere length 

variation (Supplementary Fig. 15) as well as fusion gene ITH and RNA ITH 

(Supplementary Figure 16). In addition to molecular events, when we scored 

histological heterogeneity using H&E-stained section of patient tumor slides, we 

found a positive correlation between histological heterogeneity and genomic ITH 

even though they have not reach statistical significance due to limited sample size 

(n=12, Supplementary Fig. 17). In summary, we revealed a multi-layer phenotypic 

and genomic heterogeneity with high correlation among multiple ITH features. 
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Treatment strategies contending a dynamic landscape of ITH  

Our genomic and transcriptomic analyses revealed extensive tumor heterogeneity 

which may greatly affect current systemic therapies in HCC. To fully dissect possible 

impacts of ITH, we first explored the heterogeneity of driver mutations with 

therapeutic potentials 
19,43,44

. Using two well-annotated databases, CGI 
45

 and 

OncoKB 
46

, we first curated potential targetable mutations in the PLANET cohort that 

showed different levels of supporting evidence for their therapeutic potentials. For 

example, level 1 are mutations in the current clinical guidelines for other indications, 

while level 2 and 3 are mutations with clinical or pre-clinical evidence respectively, 

and level 4 are other unconfirmed mutations that occur in the targetable genes 

(Methods). It is worth pointing out that most of these targetable genes were not 

derived from HCC, but were from therapeutical implications in other cancer types. 

Across the PLANET cohort, the degree of ITH for these potentially targetable 

mutations varied dramatically across patients from being all truncal (ITH_41) to all 

non-truncal (ITH_59, Fig. 5a, Supplementary Table 4c). Surprisingly, 81.8% of the 

level 1 mutations were subclonal (Fig. 5b) which seems to be much higher than 

common HCC drivers (Fig. 1c, Supplementary Fig. 4). Even though targetable 

mutations for drugs outside the clinical guideline had higher truncal proportions, 

substantial proportion of these mutations remained subclonal (Fig. 5b, Supplementary 

Fig. 18). High subclonality also seems to be true for copy number based biomarkers. 

For example, FGF19 amplification,a biomarker for FGFR inhibitors in clinical 

trials
47,48

, had high level of heterogeneity with more than 60% of the amplification 

being subclonal(Supplementary Fig. 6). In view of such high genomic ITH, increasing 

the number of samples from a tumor would increase the chance of therapeutic targets 

(Fig. 5c), which might significantly improve the poor performance in the 

biomarker-based treatments in HCC.  
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In addition to genomic heterogeneity, transcriptomic heterogeneity may also pose 

serious challenges to current treatment strategy. For example, first-line systemic 

tyrosine-kinase inhibitors (TKI) for HCC target important pathways such as the 

angiogenesis pathway 
49

 which was unevenly expressed across the tumor sector. 

Concordant with the transcriptomic subtype analysis, patients with C2 subtype 

showed low activation level of the angiogenesis and much higher ITH in the 

angiogenesis pathway was observed in patients with mixed RNA subtype 

(p-value=0.0039). Assuming tumors with low activation levels would not response to 

TKIs, a cutoff for treatment response was set to match the reported response rate of 15% 

(Methods) 
13

. With the high transcriptomic ITH, only 5.5% of the patients were 

predicted to be responsive for all sectors while 25.5% of the patients would show 

mixed responsiveness (Fig. 5d and 5e). Such mixed responsiveness was found to be 

rather invariant to the cutoff values used (Fig. 5f), indicating mixed treatment 

response as a general property of the high phenotypic ITH. Qualitatively similar trend 

was found when we apply the same analysis to other targets of first-line systemic 

TKIs, as well as immunotherapies (Supplementary Fig. 19). In summary, we found 

that high phenotypic heterogeneity in HCC could lead to mixed response for a wide 

range of therapeutic targets.  

Recently, combination therapies targeting both the angiogenesis pathway and ICB 

have shown great potential in improving patient response 
13

, yet the impact of 

phenotypic ITH on the combination therapy remains unknown. Notably, we observed 

only a weak correlation between the targets of these two agents (Fig. 5g), suggesting 

that the response of this combination therapy may be rather independent. Interestingly, 

such orthogonality did increase the predicted response rates for the combination 

therapy compared to monotherapies (Fig. 5g). For example, patients with C2 subtype 

would be expected to show low response rate for first-line TKIs, yet a substantial 

proportion of them contained sectors likely responsive to ICB, especially for patients 

with mixed subtypes (Supplementary Fig. 19). Interestingly, patients with mixed 
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subtypes seem to have higher chance of containing responsive sectors for combination 

therapies due to the high dispersion in the transcriptomic landscape (Fig. 5h and 5i). 

Thus, heterogeneity may not always play an adverse role affecting the response rate in 

the case of combination therapies. Taken together, combining treatments targeting 

orthogonal pathways can increase the overall response rate across a wide range of 

patients, providing a unique strategy contending the extremely high ITH in HCC. 

Tumor heterogeneity contributes significantly to patient prognosis 

From multi-layer heterogeneity, we found that both RNA and immune ITH strongly 

correlate with disease progression, suggesting important potentials using multiple ITH 

features for patient prognosis. In order to combine multiple information in patient 

prognosis, we first explored whether the degree of multi-layer ITH correlate with 

other features of tumor biology including clinical and molecular features (e.g. driver 

mutation status). Using 4 fundamental clinical features (e.g. stage), 8 molecular 

features (e.g. RNA subtypes) and 3 ITH features (degree of DNA, RNA and immune 

ITH) (Fig. 6a, Supplementary Table 5a), we computed pairwise correlations among 

all these features (e.g. Supplementary Fig. 20) and found significant correlations 

between ITH features as well as between ITH features and other types of features. 

These observations suggest that the degrees of ITH are not fully independent of other 

layers of information and ITH features can be integrated with other clinical and 

molecular phenotypes for integrative survival analysis. 

In order to combine information across layers, we constructed a multivariate Cox 

model to integrate all the features and stratified patients into three subgroups based on 

the Recurrence Free Survival (RFS) (Fig. 6b-d, Supplementary Fig. 21, 

Supplementary Table 5b). Multiple molecular and clinical features (e.g. stage or RNA 

subtypes) tend to distributed unevenly across the three subgroups (Fig. 6c), suggesting 

distinctive phenotypes across survival subgroups. Interestingly, while TNM stage 

remains as an important predictor of RFS, multiple ITH and molecular features also 

contribute significantly to the survival model (Fig. 6b). In order to explicitly test the 
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importance of the ITH features, we compared a baseline model without ITH features 

vs the full model with ITH features (Fig. 6b, Supplementary Note 5). The multivariate 

cox model with ITH features performed much better than the baseline model (paired 

t-test p-value= 7×10
-4

, based on Harrell’s concordance index (c-index) or p-value = 

0.015 based on the likelihood ratio test, Supplementary Fig. 22). In summary, with the 

largest prospective cohort on ITH for HCC, we found that multiple ITH features form 

an important layer of information which contributes significantly to patient prognosis 

and survival. 

Discussions 

Using one of the largest prospective surgical cohorts with multi-region sampling for 

HCC, we have dissected the degree of ITH across multiple layers and provided 

several novel insights into the evolution and treatment of HCC. First of all, this study 

demonstrated the importance of studying phenotypic evolution, a pivotal layer 

under-studied in many previous studies. Contrasting to an intermediate level of DNA 

ITH found for HCC 
14

, the phenotypic heterogeneity seems to be rather high. Even in 

HCC treated with surgical resection, a significant proportion of the tumors (~ 50%) 

already carry biologically aggressive RNA subtypes (~25% as mixed subtypes, ~25% 

as advanced C2/C3 subtypes, Fig. 6e). Using a classical approach from evolutionary 

genetics, when we model gene expression patterns across multiple sectors using an 

Ornstein-Uhlenbeck process, we indeed found that a stronger statistical evidence for a 

model with multiple expressional levels for many patients with mixed subtypes 

(Supplementary Fig. 23, Supplementary Note 6, Supplementary Table 6). Since 

genomic ITH only explains 42% of the total variability in transcriptomic 

heterogeneity (Fig. 3g), this low correlation might have allowed the genotypic (DNA) 

and phenotypic (RNA) ITH to decouple from each other and evolve in different 

trajectories (Figure 6e). When we tested the correlation between multi-layer ITH and 

patient clinical features (e.g. viral status), no significant correlation was found, 

suggesting that HCC etiology might not be a strong determinant of tumor 
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heterogeneity. Thus, the study of phenotypic evolution opens new directions for 

future studies identifying important factors (e.g. epigenetic changes in cellular 

plasticity or tumor microenvironment changes) and mechanisms that might drive 

rapid phenotypic evolution within HCC (Supplementary Note 6). This posits an 

interesting question how phenotypic evolution could have occurred in other cancer 

types and whether HCC is a phenotypically more heterogeneous cancer type. In 

summary, our study not only revealed an unprecedentedly dynamic landscape of 

phenotypic heterogeneity in HCC, but also highlighted the importance of studying 

phenotypic evolution across cancer types. 

Secondly, the spatial sampling of tumor sectors revealed an IBD pattern where 

different parts of the tumor and the immune microenvironment evolve and 

subsequently attain different phenotypic subtypes within a single tumor (Fig. 6e). 

Such spatial segregation could allow subclonal driver mutations to reside in different 

locations of the tumor, further driving local adaptation. To our knowledge, this 

dynamic phenotypic evolution and co-existence of multiple phenotypic subtypes 

(RNA and immune subtypes) have not been previously reported in any cancer type. 

Previous population genetic modeling suggested that the IBD pattern can be 

compatible with many evolutionary scenarios (e.g. different growth models, 

Supplementary Note 7)
21

. Thus, the study of spatial heterogeneity in HCC provided a 

unique model for tumor evolution, worth testing in other cancer types. 

Finally, the heterogeneous genomic and transcriptomic landscape of HCC might 

explain why monotherapies targeting alterations suggested by a single biopsy has 

been so poor in HCC 
50

. As monotherapies might not be able to target heterogeneous 

parts of HCC, combination therapies targeting multiple vulnerability of the tumor can 

yield better outcome. Using anti-angiogenesis and ICB therapies as an example, we 

illustrated how combination therapy on weakly correlated targets could have 

improved the treatment response in a heterogenous landscape like HCC (Fig. 5g-i). 

Moreover, treatment responses would be affected by both the mean expression level 
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of drug targets and the level of ITH across sectors. A homogenous tumor with low 

expression of the target may not response to treatment at all, while patients with 

highly heterogeneous tumors may benefit more from combination therapies due to the 

higher dispersion on the transcriptomic landscape (Fig. 5h). In sum, the PLANET 

cohort provided a unique resource for the community to explore possible new 

combination therapies contending an unprecedentedly heterogeneous landscape, 

further improving personalized treatment in HCC.  
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Data availability 

The raw data for this study has been deposited at in the European Genome-phenome 

Archive (EGA, http://www.ebi.ac.uk/ega/) under accession codes 

EGAS00001003813. All clinical records, somatic mutations, copy number variations 

and raw expression counts from our study are hosted in OncoSG 

(https://src.gisapps.org/OncoSG/) under dataset ‘Hepatocellular Carcinoma (GIS, 

2020)’ which is publicly available.  

 

Materials and Methods 

Patient recruitment and spatial sampling 

67 patients were recruited from six regional hospitals from the Asia-Pacific 

Hepatocellular Carcinoma (AHCC) trial group. A full set of patient recruitment 

criteria was described in the Supplementary Note 1. The PLANET study was 

approved by Singhealth Centralized Institutional Review Board (2016/2626 and 

2018/2112) and informed consent was taken from each patient before enrollment.  

Tissue sampling and genomic sequencing  

A single slice was harvested in the tumor through the capsule and multiple sectors 

(regions) along one axis of the tumor were then harvested. Non-tumor liver tissues (≥ 

2 cm away) from the tumor were also harvested. Genomic DNA and mRNA were 

extracted from the patient samples and subsequently sequenced at Novogene-AIT Inc 

and Genome Institute of Singapore.   

Genomic analysis  

Raw genomic data followed read mapping, mark duplicates, re-alignment, 

re-calibration and variant calling (Supplementary Methods). Signature analysis was 

conducted using the NMF method. Viral integration was identified using BATVI 
42

 

and telomere length was estimated using the TelSeq method. Potentially targetable 

mutations were annotated using CGI 
45

 and OncoKB 
46

.   
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We measured the level of tumor heterogeneity in DNA (DNA ITH) as the number of 

private mutations divided by the total number of mutations (Fig. 2a). Using the list of 

somatic mutations called from each sample, we calculated the hamming distance 

between all sample pairs and inferred the phylogenetic relationship between tumor 

samples using the Neighbor-joining algorithm 
30

. We used the unbiased estimator 

from Weir and Cockerham 1984 to estimate FST 
31

. PyClone 
33

 and PhyloWGSb 

32
 were used for the clonal decomposition. We computed cancer cell fraction (CCF) 

for all mutations adjusting tumor purity and copy number using the method provided 

in R package EstimateClonality available at https://bitbucket.org/nmcgranahan/ 

pancancerclonality/src/master/. Neutrality test was conducted as the linear regression 

(i.e. goodness of fit) between 1/VAF(Variant Allele Frequency) and number of 

cumulative mutations.   

RNA analysis  

RNA sequence data followed an in-house pipeline 

(https://github.com/gis-rpd/pipelines). We selected top 3000 most variable coding 

genes based on their median absolute deviation (MAD) across the cohort for RNA 

clustering.  NMF clustering and bootstrapping were used to assign subtypes to 

samples for each patient. SubMap 

(http://software.broadinstitute.org/cancer/software/genepattern/) was used to measure 

the similarity between different clustering results. Gene set enrichment analysis was 

carried out using GSVA package in R. For each patient, Spearman 

distances (1-Spearman correlation) between coding gene expression of all pairwise 

tumor samples were computed. Mean of all pairwise sector distances was taken as the 

RNA ITH value of the patient. FusionCatcher was used to identify fusion genes. 

Immune cell populations of tumor samples with available RNA-seq data were 

estimated using the method of Danaher et al 
39

. 
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Feature correlation and integrative survival analysis  

For testing correlation among variables, Fisher’s exact test, linear regression or 

Kruskal–Wallis test were used for testing correlation between variables. Multivariate 

survival model was implemented in the coxph function in R. Harrell’s concordance 

index (c-index) was calculated using the concordance.index function from survcomp 

R package. A full description of all the methods was given in Supplementary 

Methods.  
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Figure 1:  Genomic landscape of the cohort.    

(a) Schematic representation of the grid sampling. A central slice is taken out from the 

tumor and consecutive sectors were sampled along a grid line. (b) Oncoprint plot of 

the common drivers (>=4%) across the cohort (See also Supplementary Figure 3). 

Columns are the sample and rows are genes. Percentage of alterations are shown on 

the left. Multiple sectors belonging to one patient were annotated (patient, top). 

Mutation burden is plotted as a bar plot on the top. Clinical features were shown at the 

bottom annotation panel. (c) The relationship between truncal status and frequency of 

the somatic alterations (SNVs, amplifications and deletions at the cytoband level). 

(d) The distribution of signature contributions for the truncal and non-truncal 

mutations. P-values were calculated with two-sided paired Wilcoxon tests.  

  

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/advance-article/doi/10.1093/nsr/nw

ab192/6414014 by U
C

L, London user on 15 N
ovem

ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 

 

Figure 2: DNA heterogeneity and non-neutral evolution 

(a) For any two sectors of a patient, DNA ITH is calculated as the total number of 

private mutations over the total number of mutations of the two sectors. A wide range 

of DNA ITH existed across the patient cohort. The histogram in the inner circle 

displayed the level of DNA ITH. Representative phylogenies from low/medium/high 

ITH quantiles are shown in the rainbow with color scale ranging from blue (lowest 

ITH) to red (high ITH). (b) The relationship between number of tumor samples and 

the fold increase in the observed variability (see Methods, the same color scale as Fig. 

2a). (c) An illustration of spatially separated (SS) and spatially mixed (SM) tree 

pattern. (d) Sample phylogeny of patient ITH_52. (e) IBD pattern of patient ITH_52. 

The regression between the physical distances of the patient’s sectors (X-axis) and 

their genetic distance (FST) (Y-axis). (f) Clonal decomposition using PhyloWGS. The 

regression relationship between the physical distance and cosine distance of the clonal 
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composition of the tumor sectors (Methods). (g) The left panel is the phylogenetic 

relationship of the clones. Right panel shows the clonal composition of the tumor 

sectors. (h) Cartoon illustration of testing non-neutral evolution in the sample without 

any private driver (T1) and the sample with private driver (T2). (i) The R-square fit 

(testing neutral evolution) in samples with private drivers and without private drivers.  
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Figure 3: RNA subgroup and mixed subtypes 

(a) Heatmap of the expression of top 3000 MAD coding genes (row) across the three 

RNA subtypes (C1, C2 and C3) in all the samples (column). (b) Enrichment of 

important functional pathways and major driver mutations across the three subtypes. 

CGP are liver-related chemical and genetic perturbations (CGP) gene sets (see 

Methods). (c) Correlation between RNA subtypes and stages across all samples. (d) 

Subclass mapping between subtypes in the PLANET cohort and the TCGA Asian 

cohorts (Methods), and Kaplan-Meier survival analysis of the subtypes in the TCGA 

asian cohorts. (e) Circos plot of the RNA subtypes. The Circle shows RNA subtypes 

of tumor sectors (arranged in physical order) of 17 patients with mixed RNA subtypes 

as well as the pure subtype patients. (f) PCA plot of the transcriptome from tumor 

sectors with lines linking tumor sectors of patients with mixed RNA subtypes. (g) 

Correlation between DNA ITH and RNA ITH. (h) The relationship between stage and 

RNA ITH (left) and the relationship between stage and DNA ITH (right). (i) 

Correlation between mixed subtypes and RNA ITH (left) and DNA ITH (right). (j) 

The proportion of mixed subtype patients as a function of stage. 
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Figure 4: The immune subtype and immune ITH 

(a)Tumor sectors are clustered by the level of estimated immune infiltration 

(Methods). Each row is an immune cell type and each column is a tumor sector. If a 

patient has all sectors classified as low levels of immune infiltration (cold, blue), the 

patient’s samples are linked by a blue line. Red or orange lines are used for purely hot 

or mixed subtype patients. (b) Linear relationship between DNA ITH and immune 

ITH. (c) Linear relationship between RNA ITH and immune ITH.  (d) Relationship 

between stage and immune ITH. (e) Relationship between stage and the standard 

deviation of the GEP score.  
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Figure 5:  The impact of ITH on possible patient treatment response 

(a) Representative patients with varying level of ITH for potentially targetable 

mutations were shown. Mutations were classified based on the level of evidence for 

their therapeutic potentials (1, in clinical guideline for other indications; 2, supported 

with clinical data; 3, supported with pre-clinical data; 4, other mutations in targetable 

genes, Methods). (b) Proportions of truncal and non-truncal mutations for potentially 

targetable genes. (c) Proportions of patients found to contain potentially targetable 

mutations when increasing the numbers of sectors examined from a tumor (Methods). 

(d) Activation level shown as the GSVA score for the angiogenesis pathway (one of 

the target pathways for the sorafenib and Lenvatinib). The upper 15% (response rate) 

quantile as set as the cutoff value. (e) The predicted response across patients based on 

different RNA subtypes. (f) Predicted response rates based on varying levels of cutoff 

values (Methods). (g) The correlation between the two agents targeted by the 

combination therapy. Based on GSVA and GEP scores, predicted response to 

combination therapy for all samples was shown. Samples can be divided into different 

response quadrants (left) and the corresponding patient-level response were shown for 

anti-angiogenesis, ICB, and combination therapies (right). (h) Predicted response 

across sectors for selected patients with high (left) and low (right) phenotypic ITH. (i) 

Comparison of patient-level predicted response between monotherapies and 

combination therapy among patients with high and low phenotypic ITH. 
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Figure 6: Integrative survival analysis and natural history of HCC evolution  

(a) Correlation network of the selected clinical, molecular as well ITH features. Edges 

of the network indicates correlation between features (thicker lines indicate smaller 

correlation p-values). Upward triangles represent a hazard ratio (HR) less than 1 (later 

recurrence) and downward triangles represent a HR greater than 1 (earlier recurrence). 

For features with multiple levels such as stage, HR of the most significant level is 

used. Black border around the triangle indicate significance (log-rank score test 
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p-value<0.05) in the univariate Cox model.  (b) Ranking of importance among 

variables in the multivariate Cox model. Hazard ratios and p-values from the 

multivariate Cox-model were also shown. (c)  Survival groups predicted based on the 

multivariate Cox model.  Stars in the variable names indicates that the feature is 

significantly correlated to the predicted subgroups. Immune markers and treatment 

options were not used in the Cox model but are shown as 

annotations.  (d) Kaplan-Meier curves for the predicted survival groups. (e) 

Schematic representation of the natural history of HCC evolution with key events in 

different clinical stages. Pie charts show the patient-level proportion of RNA and 

immune subtypes across different stages from the same set of patients used in the 

above Cox models. 
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