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Generalized Modal Expansion of Electromagnetic
Field in 2-D Bounded and Unbounded Media

Qi I. Dai, Weng Cho Chew, Fellow, IEEE, Yat Hei Lo, Yang G. Liu, and Li Jun Jiang, Member, IEEE

Abstract—A generalized modal expansion theory is presented to
investigate and illustrate the physics of wave-matter interaction
within arbitrary two-dimensional (2-D) bounded and unbounded
electromagnetic problems. We start with the bounded case where
the field excited by any sources is expanded with a complete set
of biorthogonal eigenmodes. In regard to non-Hermitian or non-
reciprocal problems, an auxiliary system is constructed to seek for
the modal-expansion solution. We arrive at the unbounded case
when the boundary tends to infinity or is replaced by the perfectly
matched layer (PML). Modes are approximately categorized into
two types: trappedmodes and radiationmodes, which respond dif-
ferently to environment variations. When coupled with the source,
these modes contribute to the modal-expansion solution with dif-
ferent weights, which leads to a reduced modal representation of
the excited field in some geometries.

Index Terms—Eigenproblem with perfectly matched
layer (PML), generalized modal expansion, reduced modal
representation.

I. INTRODUCTION

E IGENMODE expansion (EME) is a powerful tool for the
study of many different electromagnetic related applica-

tions. At microwave frequencies, efficient analysis of cavity res-
onators [1] and waveguides [2] by EME are well documented.
Moreover, EME is also widely used in modeling a variety of
real-life applications in the optical regime [3], including multi-
mode interference (MMI) couplers, photonic crystal fibers, and
VCSEL cavities. For example, when a wave guiding structure
is investigated, the field is expanded in terms of a complete
basis set of local orthogonal eigenmodes of each longitudinal
invariant section. Therefore, one can apply mode matching [4]
to calculate the field propagation in the whole device. That is, to
match the tangential components of modal field at each section
interface due to the continuity condition.
Most of the previous literature on EME has a limitation

that they are system-specific, mainly on bounded resonating
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structures or semi-bounded guiding structures. In this letter,
we present a generalized modal-expansion-based analysis that
yields a unified treatment of bounded and unbounded electro-
magnetic problems. To show the idea lucidly without loss of
generality, we focus on the 2-D scalar wave problem here. We
start with an arbitrary inhomogeneity bounded by a perfect elec-
tric conductor (PEC) or a perfect magnetic conductor (PMC).
Later, we generalize the analysis to the unbounded case by let-
ting the boundary tend to infinity or replacing the PEC or PMC
boundary by the perfectly matched layer (PML). Hence, the
same modal expansion process can be applied to the unbounded
fields. We include several numerical examples to demonstrate
the phenomenon distinguishing trapped modes from radiation
modes when the environment varies, and to show a reduced
modal representation that may qualitatively approximate the
field solution. Our work can provide a different interpretation
into the physics of wave interaction with complex structures
by using a mode picture of computational electromagnetics
(CEM) data. Such physical insight is overlooked by most elec-
tromagnetic engineers. Moreover, this work can be extended
to 3-D applications. Notice that in this letter, we emphasize on
offering physical insight via a modal-expansion-based analysis
instead of aiming to develop any fast CEM method.

II. GENERALIZED MODAL EXPANSION THEORY

A. Bounded Case

Consider an arbitrary 2-D linear inhomogeneity
in a source-free domain enclosed by a boundary contour .
The governing equation for the time-harmonic 2-D scalar wave
is written as

(1)

where , and are
the eigenvalues. For transverse magnetic (TM) waves,
and , while for transverse electric (TE) waves,
and . On the boundary , TMwaves satisfy when
PEC is applied, or when PMC is applied, and
TE waves satisfy when PMC is applied, or
when PEC is applied. Note that denotes the unit normal

vector of contour . The scalar Helmholtz equation given by
(1) is essentially a generalized eigenvalue problem in which the
eigenmodes of eigenvalues satisfy

(2)

Here, and . The finite ex-
tent of domain guarantees the existence of countably infinite
eigenmodes for certain discrete values of .When the bounded
medium is Hermitian, or and , both operators
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and can be shown to be Hermitian, based on which we can
obtain the orthogonality relations of the eigenmodes as

for (3)

where the inner product is defined to be

(4)

Regarding to the degenerate eigenmodes with the same eigen-
values, we can apply the Gram–Schmidt process to orthogo-
nalize them. Equation (1) has no null space for TM wave when
PEC boundary is applied and for TE wave when PMC boundary
is applied. This is different from the 3-D vector problem where
the curl–curl operator has a large null space.
When sources are introduced to domain , the scalar wave

equation becomes

(5)

Here, the sources may contain both electric and magnetic cur-
rents, i.e.,

for TM (6)

for TE (7)

By using the orthogonality relations in (3), the field solution of
(5) can be expanded in terms of the complete set of eigen-basis
and their coefficients , given by

(8)

Note that in the case of lossy (non-Hermitian) but reciprocal
medium where and , (8) is still valid provided
that the inner product is defined as

(9)

In most cases, the medium may be neither Hermitian nor re-
ciprocal, and hence (3) is no longer valid. More effort needs to
be made to seek for a simple expression of . One strategy is to
define an auxiliary eigen-problem in the same domain , which
may be in the form of [5], [6]

(10)

where satisfy the same boundary condition as in (2).
Thus, the orthogonality relations become

for (11)

where the inner product is defined as in (9). Again, degenerate
modes can be orthogonalized via the Gram–Schmidt process.
Therefore, we can employ (11) to obtain the modal expansion
solution of (5) that is

(12)

One may also use the periodic boundary condition (PBC) to
arrive at a similar expansion formula by following the afore-
mentioned process. However, these eigenmodes become prop-
agating Bloch waves in the PBC case, which is different from
the standing modes when bounded by a PEC or PMC.

B. Unbounded Case

The unbounded case is achieved by letting the boundary con-
tour tend to infinity. However, doing this alone may not guar-
antee the radiation condition. The remedy is to introduce a small
loss to , and hence, only outgoing wave solutions are allowed
at infinity.
When the boundary is finite, one can approximately divide

the global eigenmodes into two types. The first type mainly res-
onates inside the inhomogeneity such that little energy leaks out.
Therefore, they are considered as trapped modes with a high
quality factor (high- ). The rest form the second type, including
modes resonating between the inhomogeneity and the boundary,
and modes resonating due to the inhomogeneity but efficiently
coupling energy to external fields. Such modes should have
moderate or low values. Note that this categorization is qual-
itative, however it is useful in many cases due to the physical
insight embraced.
As the boundary tends to infinity, the first type of modes re-

main almost unchanged. They are “immune” to the environment
variance, regarding the mode shapes and resonant frequencies.
On the other hand, the second type of modes is affected ob-
viously as the boundary expands. They eventually become a
continuum from discreteness. Such modes are considered ra-
diation modes since they are able to carry energy to infinity.
Now, we can apply the modal expansion analysis to the un-
bounded problem based on the above approach and approxi-
mately rewrite (12) as

(13)

where

(14a)

(14b)

The first term in (13) corresponds to discrete trapped modes,
while the second term corresponds to continuum radiation
modes. Strictly speaking, the spectra of both trapped modes
and radiation modes broaden when tends to infinity since
none of the eigenmodes are completely confined to the inho-
mogeneity unless the medium has an infinitely high refractive
index. Nevertheless, we still keep the trapped modes in a dis-
crete summation form since trapped modes slightly couple with
the external environment, resulting in minor spectrum splitting.
In numerical studies, PML of finite extent can be employed

to emulate the unbounded case [7]. Stretched-coordinate (SC)
PML maps one or more coordinates to complex numbers,
resulting in exponentially decaying waves in the PML region
rather than oscillating or traveling waves [8]. It has been proven
very effective in absorbing outgoing waves. One may apply
SC-PML to solve for trapped and radiation modes, which
usually play significant roles in modal expansion.
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Fig. 1. (a), (b) Field patte4n (real part) of a radiation mode I and a
trapped mode II. (c) Eigenfrequency of mode II when cavity dimension varies.
(d) Eigenfrequencies of 40 modes closest to the target frequency 1.1 GHz for
both small-loss and lossless case.

III. NUMERICAL SIMULATION STUDY

In this study, the infinite dimensional operator eigenvalue
problem (2) is projected onto its subspace and approximated
by a finite dimensional matrix eigenvalue problem. There are
several ways to discretize (2), such as the finite difference
method (FDM), the finite volume method (FVM), and the finite
element method (FEM). Here, the Yee-grid-based finite dif-
ference method is employed to demonstrate several TM wave

examples in the frequency domain. To overcome
the staircase error, we implement the conformal technique
proposed in [9]. The eigensolutions of the resulting sparse
eigen-system are solved for by applying the implicitly restarted
Arnoldi algorithm [10].
In the first numerical example, an inhomogeneous dielectric

ring enclosed by a square PEC cavity is studied to understand
how different types of modes behave as we enlarge the cavity
dimension. The outer and inner radii of the ring are 0.07 and
0.03 m. The ring is made by two halves, and the relative permit-
tivity of the upper and lower halves are and .
We place the ring at the center of the cavity whose side length
varies from 0.2 to 1 m at a step of 0.1 m. The spatial incre-
ment of the Yee grid is chosen to be 1 mm. Fig. 1(a) and (b)
show the field pattern or of a certain radiation
(nontrapped) mode I and trapped mode II when the cavity has
a dimension of 1 m . The real part of the eigenfrequencies
between the two eigenmodes are very close, namely 1.2803 and
1.2893 GHz. However, the -factor of mode I in Fig. 1(a) is
much lower than that of mode II in Fig. 1(b). It is obvious that
for the trapped mode, strong resonance occurs inside the inho-
mogeneity, which confines most of the energy. As the cavity
side length increases, the eigenfrequency of mode II varies very
slightly as shown in Fig. 1(c), so does its mode shape. On the
other hand, radiation modes vary and split as the cavity is made
larger, and their spectra become denser and denser, which even-
tually form a continuum when the boundary tends to infinity. As

Fig. 2. (a) Simulation geometry. (b) of mode at stirrer’s angle
. (c), (d) of mode at stirrer’s angle and 0.

mentioned above, a small loss is introduced to the cavity such
that we assume the imaginary part of the free-space permittivity
to be 10 . Therefore, the eigenfrequencies become complex.
The trapped modes can be easily identified since their eigenfre-
quencies have a relatively small imaginary part. Eigenfrequen-
cies of 40 modes closest to the target frequency 1.1 GHz for
both small-loss and lossless cases are illustrated in Fig. 1(d). For
the small-loss case, the eigenfrequency with the second smallest
imaginary part (in magnitude) corresponds to mode II as shown
in Fig. 1(b).
In the second example, we further demonstrate how trapped

modes respond to the variance of the environment. In a 2-D
TM reverberation chamber, a dielectric of relative permittivity

bounded by a PEC shell couples with the externality
through two small apertures [Fig. 2(a)]. The stirrers are made
by metals of high conductivity. The dimensions of the chamber
and the dielectric are 4 2 and 0.5 0.5 m . The FD grid
length is taken to be 0.0125 m. We seek for trapped modes
of eigenfrequencies closest to 300 MHz. Fig. 2(b) displays a
trapped mode corresponding to an unchanged eigen-
value (real part). Due to the position of the
apertures, mode has a lower -factor than , but
we still consider it to be trapped [Fig. 2(c)] since its mode
shape and eigenfrequency remain almost unchanged when the
stirrer’s angle changes. Fig. 2(d) shows the field pattern when
the trapped mode couples with the external mode at a
certain stirrer’s angle. On the other hand, trapped mode
does not couple to the external mode regardless of the stirrer’s
angle due to its higher -factor.
In the third example, we present the reduced modal repre-

sentation of an unbounded field based on modal expansion. The
geometry under study is illustrated in Fig. 3(a) where a cavity
with an aperture is partially filled by a dielectric. The walls of
the cavity are modeled as PEC, and the relative permittivity of
the dielectric is 2.2. The overall computational domain occu-
pies 100 100 Yee grids. The size of each Yee grid is taken as
0.01 0.01 m . The cavity has a dimension of 0.2 0.16 m ,
while the dielectric has a dimension of 0.05 0.16 m . The
aperture is only 0.03 m wide. A 10-layer PML is added to each
wall of the domain to effectively reduce the artificial reflection.
A -polarized current source is placed as shown in Fig. 3(a)
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Fig. 3. (a) Simulation geometry. (b)Weighting coefficients of expansion eigen-
modes. (c), (d) Imaginary parts of field distribution for eigenmodes with the
largest and second largest weighting coefficient.

Fig. 4. (a) Real part of by direct solution. (b) Real part of by
modal expansion. (c) Imaginary part of by direct solution. (d) Imagi-
nary part of by modal expansion.

to generate a TM field. The working frequency is chosen to
be 2.7 GHz. In the simulation geometry, the point source ex-
cites several eigenmodes and couples energy to each of them
with different complex weights, which are determined by (13)
and plotted as in Fig. 3(b). Most of the source energy is taken
by the eigenmode with the largest weighting coefficient

[Fig. 3(c)], which not only res-
onates due to the cavity confinement, but also carries the source

energy out of the cavity to infinity through the aperture. A dif-
ferent case is the eigenmode with the second largest coefficient

[Fig. 3(d)], which only res-
onates within the cavity, with little modal energy leaking out.
Such a trapped mode can be identified from the eigenfrequen-
cies of very small imaginary parts, since the imaginary part of
the eigenfrequency indicates damping. Large damping is a re-
sult of energy dissipation that corresponds to radiation in this
example. The field solution under the source excitation, on one
hand, can be obtained by directly solving the discretized ma-
trix equation resulted from (5). Fig. 4(a) and (c) shows the real
and imaginary part of the field response , respectively.
On the other hand, the solution may be approximated by the
weighted sum of several significant modes. Here, we take ad-
vantage of 11 most crucial eigenmodes to obtain the modal-ex-
pansion solution, the real and imaginary part of which are shown
in Fig. 4(b) and (d), respectively. By comparison, we find that
the modal-expansion solution is a reasonably good approxima-
tion of the original field solution, which indicates that only a
few significant modes are needed to qualitatively represent the
field distribution in this example.

IV. CONCLUSION

A generalized modal expansion theory of a 2-D electromag-
netic field in both bounded and unbounded media has been pro-
posed. A reduced modal representation of the field response
under excitation has been presented. Excited fields can be rep-
resented approximately by a small number of trapped and ra-
diation modes. This work applies CEM techniques to assist the
modal analysis. It also offers useful physical insight in the mi-
crowave device and antenna design.
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