338 research outputs found

    Understanding the newly observed Y(4008) by Belle

    Full text link
    Very recently a new enhancement around 4.05 GeV was observed by Belle experiment. In this short note, we discuss some possible assignments for this enhancement, i.e. ψ(3S)\psi(3S) and DDˉD^*\bar{D}^* molecular state. In these two assignments, Y(4008) can decay into J/ψπ0π0J/\psi\pi^0\pi^0 with comparable branching ratio with that of Y(4008)J/ψπ+πY(4008)\to J/\psi\pi^+\pi^-. Thus one suggests high energy experimentalists to look for Y(4008) in J/ψπ0π0J/\psi\pi^0\pi^0 channel. Furthermore one proposes further experiments to search missing channel DDˉD\bar{D}, DDˉ+h.c.D\bar{D}^*+h.c. and especially χcJπ+ππ0\chi_{cJ}\pi^+\pi^-\pi^0 and ηcπ+ππ0\eta_c\pi^+\pi^-\pi^0, which will be helpful to distinguish ψ(3S)\psi(3S) and DDˉD^*\bar{D}^* molecular state assignments for this new enhancement.Comment: 4 pages, 5 figures. Typos correcte

    Field dependence of currents

    Get PDF
    Arguments are presented to show that in a theory with spin , vector and axial-vector fields, the vector current in general depends upon the axial-vector field also in addition to the dependence on the vector field. The exact dependence is worked out on quite general grounds. We point out, however, that there are inconsistencies in the approach in which use is made of the definition of field dependent current and the usual canonical commutation relations of vector and axial-vector fields.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32804/1/0000177.pd

    Strong tree level unitarity violations in the extra dimensional Standard Model with scalars in the bulk

    Get PDF
    We show how the tree level unitarity violations of compactified extra dimensional extensions of the Standard Model become much stronger when the scalar sector is included in the bulk. This effect occurs when the couplings are not suppressed for larger Kaluza-Klein levels, and could have relevant consequences for the phenomenology of the next generation of colliders. We also introduce a simple and generic formalism to obtain unitarity bounds for finite energies, taking into account coupled channels including the towers of Kaluza-Klein excitations.Comment: Version to appear in Phys. Rev. D Typos corrected and remarks added to clarify figure

    Quantum corrections to the mass of the supersymmetric vortex

    Full text link
    We calculate quantum corrections to the mass of the vortex in N=2 supersymmetric abelian Higgs model in (2+1) dimensions. We put the system in a box and apply the zeta function regularization. The boundary conditions inevitably violate a part of the supersymmetries. Remaining supersymmetry is however enough to ensure isospectrality of relevant operators in bosonic and fermionic sectors. A non-zero correction to the mass of the vortex comes from finite renormalization of couplings.Comment: Latex, 18 pp; v2 reference added; v3 minor change

    A New Gauge for Computing Effective Potentials in Spontaneously Broken Gauge Theories

    Full text link
    A new class of renormalizable gauges is introduced that is particularly well suited to compute effective potentials in spontaneously broken gauge theories. It allows one to keep free gauge parameters when computing the effective potential from vacuum graphs or tadpoles without encountering mixed propagators of would-be-Goldstone bosons and longitudinal modes of the gauge field. As an illustrative example several quantities are computed within the Abelian Higgs model, which is renormalized at the two-loop level. The zero temperature effective potential in the new gauge is compared to that in RξR_\xi gauge at the one-loop level and found to be not only easier to compute but also to have a more convenient analytical structure. To demonstrate renormalizability of the gauge for the non-Abelian case, the renormalization of an SU(2)-Higgs model with completely broken gauge group and of an SO(3)-Higgs model with an unbroken SO(2) subgroup is outlined and renormalization constants are given at the one-loop level.Comment: 24 pages, figures produced by LaTeX, plain LaTeX, THU-93/16. (Completely revised. Essential changes. New stuff added. To appear in Phys.Rev.D.

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/ψγϕϕγK+KKS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.240.02+0.030.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.030.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/ψγη(2225))Br(η(2225)ϕϕ)=(4.4±0.4±0.8)×104Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0μ+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+μ+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+μ+X)BF(D0μ+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+ee^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Measurements of psi(2S) decays to octet baryon-antibaryon pairs

    Get PDF
    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    corecore