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Abstract: Arguments are presented to show that in a theory with spin %, vector and
axial-vector fields, the vector current in general depends upon the axial-vector
field also in addition to the dependence on the vector field. The exact dependence
is worked out on quite general grounds. We point out, however, that there are in-
consistencies in the approach in which use is made of the definition of field de-
pendent current and the usual canonical commutation relations of vector and
axial-vector fields.

1. INTRODUCTION

It has recently been pointed out by Adler [1], that in studying the matrix
element of the axial-vector current between vacuum and a 2y state
(y'y‘ j “5(0)| 0), one obtains results in disagreement with the ones obtained
through formal manipulations of the field equations. The discrepancy can
be traced back to the very singular nature of the product of fermion field
operators at the same space-time point [2]. If one defines however all cur-
rents as limits of products of fermion fields at slightly separated points,
then of course the definition is non-unique in the sense that one can include
in the definition dependence of thle current j “5(x) on the vector-fields, e.g.,

X+ 3z€
through a factor like exp[ie | . A“(E)déu], such that the current for-
X =-3€

mally looks like its conventional definition as € — 0. The matrix element
&y | j“5(0) | 0; however is critically dependent on such factors, and in gen-
eral this matrix element satisfies neither the transversality condition with
respect to the external photon momenta, nor the PCAC condition on j “5(x).
Definite choices of the dependence of j,5(x) on A“(x) exists for which the
transversality condition or the PCAC condition can be singly satisfied but
they come out to be mutually incompatible. The main part of this note is
devoted to a corresponding study of the dependence of the vector-current on
fields, when there exists in the theory in addition to the photon field A “(x),
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an axial field a,,(x) also. The dependence of j u(x) on A u(x) has been studied
by Boulware and Deser [3], but we show here by studying the matrix ele-
ment {y|j u(0) |a) and also from other general considerations that j (%) has
a non-trivial dependence of @, (x). Non-compatibility of a type, similar but
not exactly the same as the one for the axial current mentioned above,
again exists for the vector current. The calculations are all carried up to
order e“g, where g is the fermion axial-vector coupling constant.

2. ANOMALY OF THE DIVERGENCE OF THE AXIAL VECTOR CURRENT

Although the topic in this section has been discussed by several authors
[2, 4], we present it in a slightly different form which makes our discus-
sion transparent. We also make a correspondence between the formal deri-
vations and Feynman diagrams to emphasize that both lead to the same re-
sult. We define the axial vector current composed of charged fermion in
the presence of the electromagnetic interaction as

iy = €nqmojf’f(x) , (1)
with
'se(x) = ig T(Plx +3€)y v, exp (ie fe A (x+1)dt ) Y(x - 3€)) (2)
Tu &5 1P p =

where 7T stand for the Wick's 7T product, and the dependence of the current
on the photon field is dictated by the gauge invariance. The limiting pro-
cedure in eq. (2) is defined as

lim = lim_ fd% x(), (3)
e~ 0 xe) - o¥e
that is, the procedure of averaging over four-dimensional € -space with a

weight function which tends to 6-function in the limit. This operation im-
plies, in effect, the relations

lim ehf(ez) = lim ekeyepf(ez) =0 etc. , (4)
€~ 0 €e—0
im Y 1, (5)
im =7 0y -
€—0 2 4

The vector current is also defined in a similar way

lﬁ
5,5) = de Pl 3) 7 explie f , Aok 9t ] -t (6)

2



432 S. R. CHOUDHURY et al.

and satisfies the equation

- DAM = j#(x) = €11_'m0 . (1)

However the definition of the vector current with the extended space-time
point will be irrelevant to the discussion in this section.

We calculate the matrix element of the axial vector current between a
2y state and the vacuum state,

(1) o(2)
5
Ry | 77 (0)]0) = e Wi ° (k&
175010 = ¢%¢ 2=t 4k10k20 LA (8)
along with that of the pseudoscalar density

(1) (2)

5 2
k., k 0)|0)=¢
(ky kg | 5°(0)]0) = g o 4k10k20

2 (kR (9)

where kq, kg and e(l) ¢(2) are momenta and polar1zat1on vectors of the two
photons, respectlvely The pseudoscalar density j (x) is defined in a sim-
ilar manner as in eqgs. (1) and (2) except that the Dirac matrix Y u¥5 be re-
placed by ¥ 5.

The LSZ reduction method leads us to

2

e g T?W#( 1 %9 )= lim fe_iklxl—ik2x2{<0|T(j (x )] (x )] 0))|0>
€—0
+<0|T([A (x ) ZklOAA(xl ]axlo) b (x ))|0>

+O[(T1A (x,) - kg A, (%), j;(on 8(xy)s 3, (%) 0)
+ O TUA ) - iy (), 5, ()] 8, = ), 70 (O)0)

+ OI[A(5y) - koA, (), [4, () - iy (A, (), Tor (O] 0(x, o) 8y ) [0) . (10)

Here, since the €-limit associated with the axial vector current should be
taken at the end, the € -limit in other currents is to be understood to be
taken already without any harm. Then the fourth term in eq. (10) vanishes
because it is proportional to the parameter € associated with the vector
current j,(x1). The last term also vanishes due to the trace calculation of
the y-matrices. The remaining three terms correspond to the three graphs
of fig. 1 (a), (b) and (c¢), in the lowest order of perturbation calculation.
The "bubble" graphs figs. 1(b) and 1(c) are the new Feynman graphs intro-
duced by the € -limiting process. The alternative possibility of a bubble
graph with both the photons emitted at the same point is to be dropped be-
cause that would correspond to the fourth term in eq. (10) which as we have
just pointed out vanishes because of the limiting procedure.
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Fig. 1.

Using the canonical commutation relations of the photon fields in the
Lorentz gauge,

[4,(x), A, (0] 6(xy - v5) = 6, ,6(y - %) , (11)

we obtain the expressions for these graphs as

5 _ (@) 5(b) 5(c)
TM“( 1% ) = “(kl,k2)+T}\V“(kl,szTwu(kl,kz) ) (12)
where
5(a) . 1 jie(ky-kg) [ -iep ( 1
T = lim — e fe Tr\y vp. 75—
AV ¢ - 0(277)4 uw' Sy -k)+m
Xy 1 ) d p+(k S AP ) (13a)
Xiyp+m vzy(p+k2)+m ’
5(b)
Avu(k 2)
. € Likoe -ipe 1 1 4
= lim —A_ ?72° [e Tr(y)f - Y. = d’p
e - 0 (2m)* L Sivlp-k)+m szp+m)
oy
= lim _exppo k2 _—
€~ 0272 T 2
o1 e ky (13b)
g2 0
() 5(b) 1 avup
k., =T k)=—" B, . 14
M/p.( k) ( ) 87726 1 (14)

It is also easy to derive the following relations
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ik T5(a): lim —1- G%iE(kl'kZ) fe‘iep

1IA"av c—0 (271)4

1 1 1
gTr (}/“75 [iy(p- k1) +m T Wp mi\ Yy iy(p+ ko) + m)

1 1 1 4
T2 (175 s hg e VvaHm - iy<p+k1)+mbf ar

i é_ e k1o *ao o (15)
z(k +k )LL ifj:i) = Elimo e%ie(kl-kz\ fe-iép 32mTr (7’5 ;},Tp__;lel')jr_n{
"x iﬂ’1+m 47 ?'Y(p+}ez)+ m)§ d4p+(k1 © kg X o)
_GILm0 e%iG(krkz) fe—iab Tr (7/57)\ iyp1+ Yy S 22)+ _
"5 Bip- }@1)*‘ m 7y i7p1+ m yu) d4p§ +(ky = kg, X V)
= 2m Tiu+;i_2€>wp0 klp kzo (16)

Note that the contributions from the equal time commutators as well as
those from the surface terms are absent for the matrix element T?W
From eqs. (12) - (16), it follows that

. 5 , 5
ZkleM/u = zkszMj“ =0, 17
and that
5 1 VPO
—z(k +k ) Thvu 2m T)w —;—2 klpkzo , (18)

e., that the gauge invariance is satisfied (eq. (17)) and that the Ward
identity for the axial vector current is violated (eq. (18)). In the operator
form, eq. (18) implies that

22
F
16712 g

0 ] (x) 2mj (x) =1ig , (18)

where
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= cMVpo
Fuv‘e ch,

Fw=a“Ay-aVA“. (19)
The right hand side of eq. (18) is the anomaly pointed out by Adler [1].

It is clear from our method of derivation, that if we redefine the axial-
current as

1
€
_.5 . - .
]“(x) = li)m0 T(¢z(x+§e)y“y5 exp (— ie ]1 Ap(x+ t)dtp»(x—%e)
€ 9 -32€ (29
e
- zg——ﬁ‘ s
8712 v
then the current satisfies the PCAC condition
5 5
9 7 = 2mj . 18"
“Ju(x) mj () (18"

However, the transversality condition on the tensor T?wy(kl’ kqy) defined by

SOOI
;1 _ 2 X v 1
(kyky| 7 (0)]0) = e7g e UACUCE (8"

is no longer satisfied, i.e.,

=D 70

i Ty # 0 iy, Ty # 0 (17

ik
The PCAC and the transversality conditions are thus mutually incompati-
ble.

3. DIVERGENCE OF THE VECTOR CURRENT IN THE PRESENCE OF
AXIAL-VECTOR FIELD

We discuss the matrix element of the vector current in a similar way,
when there exists an axial vector field which satisfies the equation of mo-
tion

-3 G+ mza (x) = J5 (*)= lim j (%), (20)
VoVl a u o c—0 M
where
G, %) =2,a “(x) -3 2%, (21)

1

Se . — 1 . f€
j, ) = igT(YAx+z€)y vy exp| ie
K K -le

A)\(x + t)dt}\+ ign vy

ie

<f

1
_—2‘€

a,(x+ t)dtJtp(x-ée)) . (22)
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We also assume the canonical commutation relation
[a5(%), Gy 0(x,-3) =6, (% -y), (23)

as usual. The necessity of an axial-field dependence in the definition of the
axial vector current has been discussed in ref. [3], which determined the
coefficientn to be 1, from the requirement of consistency with the equation
of motion and the Lorentz covariance. The vector current, therefore, may
be modified as

jz (%)

€
= ie@(x+é€)-y“ exp [ie ]2
1

_‘—2~€

1
i€
; 1
A, (x+t)dt +igy & jz1 ak(x+t)dt>\} Y(x - te) |
- Ee '
(67
where the value of the coefficient £ of the a, dependent term in the expo-

nent is to be discussed in this section.

3.1. Reciprocal relation between the field dependence of the curvents
From the independence of the canonical variables

[Gok(x)’aoAl(y)]x(,:yo =0, (24a)
[ak(x),Az(y)];,‘,o 9o " [Goplx) ,Az(y)]xo =90
= (2,340, _y =0 (24b)
it follows that
E oc°k(x), AN,y = iA /), c°k(x)]xo Ly (25)

which, upon using eqgs. (7), (20) and (24), becomes

5 ,
[4,(%), aOAl(y)]xo —yg ” [4,), Gok(")]xo 9y (26)
This is the space components of the covariant expression
5 .
6j (x) 67 (v)
kY (27)
GAV(y) GaHZx) ’

Eq. (27) is trivially satisfied as an integrability condition if the currents
are derivable from a Lagrangian L by the operations

Jpla) = 57117]“;; : (28a)
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oL

(y) = 5“u (x) (28b)

Ty

Since our equations of motion (7) and (20) are not derived from a Lagran-
gian except in the limit € — 0, eq. (26) or eq. (27) leads to a non-trivial
restriction on the dependence of the currents on the fields. In fact, by using
eq. (27) we obtain

My = 1 T((3€ )y yvse, explie ﬁ Axdty +igs /2 aydty J¥(- z€))
- -1e - %€

=£{ lim T(zp(ze)yyyse exp[ie f Akdtx+zg7/5£jz a)\dt)\]\l/(-ze) (29)
€—0 -3€

The matrix element of eq. (29) between one photon state and the vacuum
state can be easily calculated (noting that the equal time commutator in the
LSZ reduction vanishes in this case):

(k]MuV|0)=i\/_Zk_ofe'ikx(O]T(jA(x),MuVHO)
- % Tisjbi(o, E) = —eﬁ% 87172 rVHP By - (30)
Hence, eq. (29) reads
M, = EMy,y, = - EMyy (31)
from which we conclude that
E=-1. (32)

It should be noted that the requirement of the second kind of y5 gauge
transformation leads us to the parameter £=+1 as in the case of the coef-
ficient n of the a, dependence in the axial vector current, in contradistinc-
tion to the choice (32).

3.2. Matrix element of the vector curvent

We next calculate the matrix element (kl 7a(0) Iq) where the states (k)
and (¢) are those of one photon and one axial vector field. Proceeding as in
sect. 2, we have

e e
; c 2o YV B
S PR () R ) 38)

Avu M/u M/u Avu
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where

TR = lim — [ ¥ (075 () 15 (3) 50| 00 ax ¥y

€ > 0e“g
L
SLES .
. - 1
= lim e tpe T [
€~ 0 (2) LS BTG-Sy M apam T
1 4
Xz‘y(p+k)+m}d ?

ipe 1 1 1 4
T fe Tr[ uYSiV(p'k)“LmyViYP+my>‘i7(P+s)+m]dp’
e—0 (21r)
(35)
igke
b . 5 ik 4
) ) = tim —E [ 5030762407 (o) |0rax ay
€ — O eZg
1.
stke » 1 ) .
= lim e £ [P Tr (v, - Y o= dp
6—'0(217)4 H (7\5ZY(P-k)+m Vz'y[>+m>
_E o, .
g2 p

(c) T 1 -tkx+iqy . €
Typy = lim — fe (OIT([AV—szAU(x),]R(O)]

€~ 0e%g
.5 4 4
xo(x ), 7, OD0)d xdy,
1.
e2%¢ -ipe 1 4
= lim Efe Tr (v vy = v o= dp
c >0 (2n)4 v (u 5iy@p-q)+m Azyp+m>
1 vup
=——¢€ q . (37)
8172 p

In eq. (35), we have used a notation
s=q-k, (38)

and the three terms-in eq. (34) correspond to the graphs in fig. 2, except
that the term that contains 9 ufpap in the LSZ reduction formula is can-
celled by a part of the equal time commutator of diagrams 2(b) and 2(c),
as is explained in appendix 1.

In order to examine various Ward Identities, we make contractions of
eq. (35) with momenta as before, obtaining,
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(al) (a2) (b) ()
Fig. 2.
( ) %’ies p 1
, a . “pe€
ik T = lim ~——— [e Tr[vw v -s)+m ¥
v Avy €—_)0(27T)4 u'biylp-s)+m '
1 1 ] 4
X(iyp+m B i'y(p+k)+m) ds
1.
. ~3l€S -ipe { 1 1 1 4
+ lim ‘—4“f Triv Y5<z'yj> Ry+m z'yp+m) "x iy(p+s)+m ap
€ —0 (2m)
.1 Appo ak,, (38)
82 p
and similarly
(a) __i_ VUpo
iq - k))x i~ ™ 5 € qpkor . (39)

Combining eqgs. (36) - (39), we get
ikUT)\V“ =0, (40)

(g - Tyyy =~ 3+8) €HPT g k. (41)

“‘é
While eq. (40) guarantees the gauge invariance with respect to the external

photon, eq. (41) tells us that the conservation law of the vector current de-
fined in eqs. (6') and (7) is not satisfied unless

E=-3. (42)

If we use the value of the parameter £ that has been derived in the pre-
ceeding subsect., eq. (32), we are led to an operator equation

ie2g
9,,9,(%) ———6 5 WGW , (43)

the right hand side of which is an anomaly similar to that of eq. (18). How-
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ever, in the subsect. 3.3, we present another argument which leads to eq.
(42), so that we have a contradiction for the determination of £.

3.3. Commutativity of the diffevential operators
We consider the following identity

=90 -ik1x1-ikoxg+iqy 2
L,=e, Je ('Dxl)('DxZ)('Dy”’”a)
4 4 4
x{0|T(A V(xl)AU(xz)a“(y))\O)d % dx,dy,
3 _ 5 -ik1x1~ik2x2+igy _ 2 _ _
_J?w eu fe ( Dy+ma)( sz)( Dxl)
< 0| T, (x, v (x)a )| 0 ax, dix. daty (44)
ATy 1% %2 ’

where the three momenta are taken on mass shell.
By making the differentiation successively, and using the result of ap-
pendix 1, it is easy to derive the relations

2 4 5.5
IM} =e " g(2n) 8(q —kl -kz) eu TM/#(kl,kz) , (45)
I —e2eemtoqg-r k) 2T (k..q) (46)
Av 1 72 "ptavp 22
where T?\V and 7', , are defined in eq. (10) and eq. (33) respectively.
Then, from eq. (17) and eq. (41), it follows that
zkn vaev =0
- ZkIAJM/eV
= z'ezg27126(q-k -k )(3+£)e56 eV“pUq k (47)
1 2 L v p 20’

which again gives £=-3.

4. DISCUSSION

We have thus observed that the vector (axial-vector) current not only
has a dependence on the field to which it is coupled to, but also on the
axial-vector (vector) field. If the dependence is taken as dictated by the
reciprocity relation, (which we believe is quite general) and the transver-
satility condition on the matrix elements of jE(O), then we are led to a
non-conservation equation for the vector current very similar to the one
obtained earlier for the axial-vector current. Alternatively, if one forces
the conservation equation for the vector current, one has, through the re-
ciprocity relations, a violation of the transversality condition on the matrix

element of the axial-vector current.
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We conclude, therefore, that the way we introduced the extension of the
currents is not compatible with the canonical quantization of vector (axial-
vector) fields to which the currents couple. As a matter of fact, our equa-
tions of motion defined in egs. (7) and (20) do not correspond tp any La-
grangian, which could be the source of the trouble.

If we start with a Lagrangian, we have two possibilities of formulating
our problem.

(i) Extension of the interaction Lagrangian. In this case the Lagrangian
can be written as

L=Lg+ lim Lfge),
€0

where the free Lagrangian L, does not involve the extension by €-method.
While the canonical quantization in this method is the same as usual, we
lose the second kind of gauge invariance for the electromagnetic interac-
tions. Although the reciprocity relation which was discussed in the pre-
ceeding section is a trivial matter, the source current is not gauge invar-
iant, in general*. One is thus not assured of the transversality condition
on the matrix elements.

(ii) The extended definition of the whole Lagrangian

L= lim (Lg(e)+Lge)) . (49)
€e—~0

In this case, the gauge invariance can be satisfied very easily. However,
the separation of the free and the interaction Lagrangian becomes difficult,
and the canonical quantization method does not seem to be unique [5, 6]**.

* The Lagrangian continues to be gauge invariant of the first kind, which in a naive
approach is sufficient to guarantee conservation (transversality) of the vector
current or PCAC for the axial-current. This however is no longer true in the
formalism of the extended source with the € -limiting procedure indicated in eq.
(48), since Noether's theorem no longer follows from the invariance requirement.

** If we follow the most primitive form of the canonical quantization, we cannot get
a finite answer for the matrix elements discussed in this text, since the factor
due to € is absorbed in the definition of the canonical variables. For reasons of
canonical quantization, one may prefer to use space-like spreading, i.e.,
€=(¢&,0). This indeed has been considered by e.g. ref[5]. (In the latter work,
spreading of the free Lagrangian L, has been attempted to order ¢-V to define
current. It seems, however, doubtful to us that this is a valid step, since the
singular™nature of the differential operator v, when acting on Green's functions,
may just compensate the small parameter €. If so, then all powers of (¢-V)?
contribute.) It is also unclear how a covariant calculation procedure, such as for
the current current correlation function, can be devised in this non-covariant
context. Recently the difficulties of the € -limiting method has been discussed in
ref. [6].
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APPENDIX

LSZ veduction formula for a massive veclor (ov axial-vector) field which
couples with a non-conserving curvent.

Let us consider the reduction of the axial vector field with momentum ¢
and the polarization vector e, in the matrix element .o In(x) |8, Qips
where a, 8 are arbitrary asymptotic states and

n(X) = n(xg,x9,- %) = T@Mxp), 0@xg), ..., 0Mx)) , (A1)

qo(i)(xi) being arbitrary local operators. We use the following shorthand
convention,

[A(y), n(X)]6(yq - X,)

T Wxy), ..., [AD), D), . .., 0PN, )0 (yg - 2i0) ,  (A-2)

M=

i=1
and assume for simplicity that the states &, do not contain the axial-vec-
tor field in question. Then, the LSZ reduction technique gives (dropping
the in, out suffixes)

0

e .
(@ 1018, @ = i70= Jd'y ™ [l | -0+ mA)a, 00, 7))

+(0| [d, ) +iq 2, (3, 7(0]o0y, - X ) |8

tey, 4  iqy .5
:@;fd y e P | TG 9, n(x)[8)

-{a | T(auapap(y), n(x) |8 +{a| [du(y) + iqoau(y), n(X)]6(y, - X ) |8

=L+ I+ 1o (A.3)

The second term of the last expression can be expressed, by doing the par-
tial integration, as

iey .
Iy = - 73gz [ty &0 a—i—u (@ | T@pay(9), n(x)) | 8)

64 .
T2, Sty Y (o |[0,an(9),1(010(yo - Xo) |BY ,  (A.4)

where the first term vanishes because of the transversality condition for
the physical particle
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-0. (A.5)

Combining the two terms Iy and /3, we obtain

e4 )
Iy+13 = gg- Jaty e (a][0,a5(3) + iag(y) - 45a4(»), n(X)]8(34 - Xo) | B)

ey,
Vg Jaty e (a|[ap(y) + 2 yao+ iga19) - 2 2o, MI]6(30 - Xo) | 8)

(-eqqp+epay) .
=i g Jaty ™ (al[a), n(X0]006 - Xo) [B)

+i Jaby €Y (a|[G%(3), n(X)]6(ro - X,)| B)

'%% faty €Y (a|[ag(y),n(X)]6vo -Xo)|B) - (A.6)

The last term vanishes by transversality condition (A.5). The final expres-
sion for the LSZ reduction is, therefore, given by

©u 4 gy 5
@[n0l8,@ = = Jdy P | 7 6), 008

€p .
+i g Jd'y o Gl [, n0T005, - X))

(-eqap+epay)
+Z—deyeqy<a|[a<y>n<m1 -x)le . A

It should be noticed that the equal time commutator contains only the ca-
nonical variables ap, G°k, so that independent fields such as fermion field
etc. in 7(X) does not contribute to the equal time commutators.

For n =€ e (x), the equal time commutator is calculated as
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ek[GOk(y),ea(x)]+ (- eqdp+epdy) (ap, €al

epf- i€ pd(x ~ ) - [GOk, a®]e0] -4(- eqdr+endy) [ap, ayle,
i3
-tep €40(y - X) - i €5(~ eGqp+ epq,) —26(3) - X)
m
a

qo qp
= ~depey 8(y - %) -ieog ‘eo(—§'1)+ek‘10 3 zé(y - X)
Ma "a

90
= ~i{(ee) +eo—5 (eq)} 8(y-x) , (A.8)

m
a

in the lowest order in € (or in the coupling constant). From this, we obtain
the following formula which has been used in the text.

€ ey 4 gy 5 €
(a|5,(0)|8,a) = Toae fdye (alT(]H(i\’),J (0))|8)

Hepsw) . . .
+ig Wq—o— {a (zew(ge)yxys exp [ie prdtp+ igk fapdtp]zp(ge) 1B .
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