873 research outputs found

    Studying the evolution of galaxies in compact groups over the past 3 Gyr - II. The importance of environment in the suppression of star formation

    Get PDF
    We present an in depth study on the evolution of galaxy properties in compact groups over the past 3 Gyr. We are using the largest multi-wavelength sample to-date, comprised 1770 groups (containing 7417 galaxies), in the redshift range of 0.01<z<0.23. To derive the physical properties of the galaxies we rely on ultraviolet (UV)-to-infrared spectral energy distribution modeling, using CIGALE. Our results suggest that during the 3 Gyr period covered by our sample, the star formation activity of galaxies in our groups has been substantially reduced (3-10 times). Moreover, their star formation histories as well as their UV-optical and mid-infrared colors are significantly different from those of field and cluster galaxies, indicating that compact group galaxies spend more time transitioning through the green valley. The morphological transformation from late-type spirals into early-type galaxies occurs in the mid-infrared transition zone rather than in the UV-optical green valley. We find evidence of shocks in the emission line ratios and gas velocity dispersions of the late-type galaxies located below the star forming main sequence. Our results suggest that in addition to gas stripping, turbulence and shocks might play an important role in suppressing the star formation in compact group galaxies.Comment: (Accepted for publication in MNRAS, date of submission November 18, 2015

    Optical performance of the JWST MIRI flight model: characterization of the point spread function at high-resolution

    Get PDF
    The Mid Infra Red Instrument (MIRI) is one of the four instruments onboard the James Webb Space Telescope (JWST), providing imaging, coronagraphy and spectroscopy over the 5-28 microns band. To verify the optical performance of the instrument, extensive tests were performed at CEA on the flight model (FM) of the Mid-InfraRed IMager (MIRIM) at cryogenic temperatures and in the infrared. This paper reports on the point spread function (PSF) measurements at 5.6 microns, the shortest operating wavelength for imaging. At 5.6 microns the PSF is not Nyquist-sampled, so we use am original technique that combines a microscanning measurement strategy with a deconvolution algorithm to obtain an over-resolved MIRIM PSF. The microscanning consists in a sub-pixel scan of a point source on the focal plane. A data inversion method is used to reconstruct PSF images that are over-resolved by a factor of 7 compared to the native resolution of MIRI. We show that the FWHM of the high-resolution PSFs were 5-10% wider than that obtained with Zemax simulations. The main cause was identified as an out-of-specification tilt of the M4 mirror. After correction, two additional test campaigns were carried out, and we show that the shape of the PSF is conform to expectations. The FWHM of the PSFs are 0.18-0.20 arcsec, in agreement with simulations. 56.1-59.2% of the total encircled energy (normalized to a 5 arcsec radius) is contained within the first dark Airy ring, over the whole field of view. At longer wavelengths (7.7-25.5 microns), this percentage is 57-68%. MIRIM is thus compliant with the optical quality requirements. This characterization of the MIRIM PSF, as well as the deconvolution method presented here, are of particular importance, not only for the verification of the optical quality and the MIRI calibration, but also for scientific applications.Comment: 13 pages, submitted to SPIE Proceedings vol. 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wav

    Dense gas formation and destruction in a simulated Perseus-like galaxy cluster with spin-driven black hole feedback

    Get PDF
    Extended filamentary Hα\alpha emission nebulae are a striking feature of nearby galaxy clusters but the formation mechanism of the filaments, and the processes which shape their morphology remain unclear. We conduct an investigation into the formation, evolution and destruction of dense gas in the center of a simulated, Perseus-like, cluster under the influence of a spin-driven jet. We particularly study the role played by condensation of dense gas from the diffuse intracluster medium, and the impact of direct uplifting of existing dense gas by the jets, in determining the spatial distribution and kinematics of the dense gas. We present a hydrodynamical simulation of an idealised Perseus-like cluster using the adaptive mesh refinement code {\sc ramses}. Our simulation includes a supermassive black hole (SMBH) that self-consistently tracks its spin evolution via its local accretion, and in turn drives a large-scale jet whose direction is based on the black hole's spin evolution. We show that the formation and destruction of dense gas is closely linked to the SMBH's feedback cycle, and that its morphology is highly variable throughout the simulation. While extended filamentary structures readily condense from the hot intra-cluster medium, they are easily shattered into an overly clumpy distribution of gas during their interaction with the jet driven outflows. Condensation occurs predominantly onto infalling gas located 5 - 15 kpc from the center during quiescent phases of the central AGN, when the local ratio of the cooling time to free fall time falls below 20, i.e. when tcool/tff<20t_{\rm cool}/t_{\rm ff} < 20. We find evidence for both condensation and uplifting of dense gas, but caution that purely hydrodynamical simulations struggle to effectively regulate the cluster cooling cycle and produce overly clumpy distributions of dense gas morphologies, compared to observation

    H_2 emission arises outside photodissociation regions in ultra-luminous infrared galaxies

    Full text link
    Ultra-luminous infrared galaxies are among the most luminous objects in the local universe and are thought to be powered by intense star formation. It has been shown that in these objects the rotational spectral lines of molecular hydrogen observed at mid-infrared wavelengths are not affected by dust obscuration, leaving unresolved the source of excitation of this emission. Here I report an analysis of archival Spitzer Space Telescope data on ultra-luminous infrared galaxies and demonstrate that star formation regions are buried inside optically thick clouds of gas and dust, so that dust obscuration affects star-formation indicators but not molecular hydrogen. I thereby establish that the emission of H_2 is not co-spatial with the buried starburst activity and originates outside the obscured regions. This is rather surprising in light of the standard view that H_2 emission is directly associated with star-formation activity. Instead, I propose that H_2 emission in these objects traces shocks in the surrounding material, which are in turn excited by interactions with nearby galaxies, and that powerful large-scale shocks cooling by means of H_2 emission may be much more common than previously thought. In the early universe, a boost in H_2 emission by this process may speed up the cooling of matter as it collapsed to form the first stars and galaxies and would make these first structures more readily observable.Comment: Main text and supplemental information, 21 pages including 6 figures, 2 table

    Evolution of particle breakage studied using x-ray tomography and the discrete element method

    Get PDF
    Particle breakage can significantly change the fabric (size and shape of particles and contact network) of a granular material, affecting highly the material's macroscopic response. In this paper, oedometric compression tests are performed on zeolite specimens and x-ray computed micro-tomography is employed, to acquire high resolution 3D images of the specimens throughout the test. The images are processed, to describe breakage spatially and quantify it throughout the test and gain information about the mechanisms leading to particle breakage. In addition to the image processing, the discrete element method (DEM) is used to study the initiation and likelihood of particle breakage, by simulating the experimental test during the early stages of loading and using quantitative results from the images to inform and validate the DEM model. A discrete digital image correlation is used, in order to incrementally identify intact grains and simultaneously get results about the strain field within the specimen, as well as the kinematics of individual grains and fragments. In the initial stages of breakage, there is a clear boundary effect on the spatial distribution of breakage, as it is concentrated at the moving boundary (more than 90% of total breakage) and circumferentially (more than 70% of total breakage) close to the apparatus cell. The DEM model can reproduce the bulk response of the material until the point where substantial breakage governs the macroscopic response and it starts to soften. Additionally, there is an initial indication that the spatial distribution of the force network matches the localisation of breakage radially, but it does not seem to localise close to the loading platen. This analysis will enrich our understanding of the mechanisms and evolution of particle breakage

    The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, The MIRI Imager

    Get PDF
    In this article, we describe the MIRI Imager module (MIRIM), which provides broad-band imaging in the 5 - 27 microns wavelength range for the James Webb Space Telescope. The imager has a 0"11 pixel scale and a total unobstructed view of 74"x113". The remainder of its nominal 113"x113" field is occupied by the coronagraphs and the low resolution spectrometer. We present the instrument optical and mechanical design. We show that the test data, as measured during the test campaigns undertaken at CEA-Saclay, at the Rutherford Appleton Laboratory, and at the NASA Goddard Space Flight Center, indicate that the instrument complies with its design requirements and goals. We also discuss the operational requirements (multiple dithers and exposures) needed for optimal scientific utilization of the MIRIM.Comment: 29 pages, 9 figure

    Transferrin mutations at the glycosylation site complicate diagnosis of congenital disorders of glycosylation type I

    Get PDF
    Congenital disorders of glycosylation (CDG) form a group of metabolic disorders caused by deficient glycosylation of proteins and/or lipids. Isoelectric focusing (IEF) of serum transferrin is the most common screening method to detect abnormalities of protein N-glycosylation. On the basis of the IEF profile, patients can be grouped into CDG type I or CDG type II. Several protein variants of transferrin are known that result in a shift in isoelectric point (pI). In some cases, these protein variants co-migrate with transferrin glycoforms, which complicates interpretation. In two patients with abnormal serum transferrin IEF profiles, neuraminidase digestion and subsequent IEF showed profiles suggestive of the diagnosis of CDG type I. Mass spectrometry of tryptic peptides of immunopurified transferrin, however, revealed a novel mutation at the N-glycan attachment site. In case 1, a peptide with mutation p.Asn630Thr in the 2nd glycosylation site was identified, resulting in an additional band at disialotransferrin position on IEF. After neuraminidase digestion, a single band was found at the asialotransferrin position, indistinguishable from CDG type I patients. In case 2, a peptide with mutation p.Asn432His was found. These results show the use of mass spectrometry of transferrin peptides in the diagnostic track of CDG type I

    Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol–gel layers

    Get PDF
    The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol–gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode’s physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate–layer interaction. From the point of view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 C.This study was supported by Grant No. N N507 501339 of the National Science Centre. The authors wish to express their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy

    Growth of Synechococcus sp. immobilized in chitosan with different times of contact with NaOH

    Get PDF
    The thickness of the walls of the capsules of chitosan-immobilized Synechococcus cultures was dependent on the time of contact with NaOH and was directly related to culture growth. After an initial lag phase, probably caused by cell damage, the capsules obtained after 80 s in a 0.1 N NaOH solution showed better growth than that of free cell cultures (6.9 and 5.2 divisions in 10 days, respectively)
    corecore