1,458 research outputs found

    Signal Transmission Across Tile Assemblies: 3D Static Tiles Simulate Active Self-Assembly by 2D Signal-Passing Tiles

    Full text link
    The 2-Handed Assembly Model (2HAM) is a tile-based self-assembly model in which, typically beginning from single tiles, arbitrarily large aggregations of static tiles combine in pairs to form structures. The Signal-passing Tile Assembly Model (STAM) is an extension of the 2HAM in which the tiles are dynamically changing components which are able to alter their binding domains as they bind together. For our first result, we demonstrate useful techniques and transformations for converting an arbitrarily complex STAM+^+ tile set into an STAM+^+ tile set where every tile has a constant, low amount of complexity, in terms of the number and types of ``signals'' they can send, with a trade off in scale factor. Using these simplifications, we prove that for each temperature τ>1\tau>1 there exists a 3D tile set in the 2HAM which is intrinsically universal for the class of all 2D STAM+^+ systems at temperature τ\tau (where the STAM+^+ does not make use of the STAM's power of glue deactivation and assembly breaking, as the tile components of the 2HAM are static and unable to change or break bonds). This means that there is a single tile set UU in the 3D 2HAM which can, for an arbitrarily complex STAM+^+ system SS, be configured with a single input configuration which causes UU to exactly simulate SS at a scale factor dependent upon SS. Furthermore, this simulation uses only two planes of the third dimension. This implies that there exists a 3D tile set at temperature 22 in the 2HAM which is intrinsically universal for the class of all 2D STAM+^+ systems at temperature 11. Moreover, we show that for each temperature τ>1\tau>1 there exists an STAM+^+ tile set which is intrinsically universal for the class of all 2D STAM+^+ systems at temperature τ\tau, including the case where τ=1\tau = 1.Comment: A condensed version of this paper will appear in a special issue of Natural Computing for papers from DNA 19. This full version contains proofs not seen in the published versio

    Performance of the neutron polarimeter NPOL3 for high resolution measurements

    Full text link
    We describe the neutron polarimeter NPOL3 for the measurement of polarization transfer observables DijD_{ij} with a typical high resolution of \sim300 keV at TnT_n \simeq 200 MeV. The NPOL3 system consists of three planes of neutron detectors. The first two planes for neutron polarization analysis are made of 20 sets of one-dimensional position-sensitive plastic scintillation counters with a size of 100 cm ×\times 10 cm ×\times 5 cm, and they cover the area of 100 ×\times 100 cm2\mathrm{cm}^2. The last plane for detecting doubly scattered neutrons or recoiled protons is made of the two-dimensional position-sensitive liquid scintillation counter with a size of 100 cm ×\times 100 cm ×\times 10 cm. The effective analyzing powers Ay;effA_{y;\mathrm{eff}} and double scattering efficiencies ϵD.S.\epsilon_{\mathrm{D.S.}} were measured by using the three kinds of polarized neutrons from the 2H(p,n)pp{}^{2}{\rm H}(\vec{p},\vec{n})pp, 6Li(p,n)6Be(g.s.){}^{6}{\rm Li}(\vec{p},\vec{n}){}^{6}{\rm Be}(\mathrm{g.s.}), and 12C(p,n)12N(g.s.){}^{12}{\rm C}(\vec{p},\vec{n}){}^{12}{\rm N}(\mathrm{g.s.}) reactions at TpT_p = 198 MeV. The performance of NPOL3 defined as ϵD.S.(Ay;eff)2\epsilon_{\mathrm{D.S.}}(A_{y;\mathrm{eff}})^2 are similar to that of the Indiana Neutron POLarimeter (INPOL) by taking into account for the counter configuration difference between these two neutron polarimeters.Comment: 28 pages, 18 figures, submitted to Nucl. Instrum. Methods Phys. Res.

    Linac modeling for external beam radiotherapy quality assurance using a dedicated 2D pixelated detector

    No full text
    International audienceQuality assurance is a key issue in intensity modulated radiotherapy. Errors can occur in the dose delivery process induces significant differences between the planned treatment and the delivered one. In this context, the Medical Application Physics group of the LPSC is developing TraDeRa (Transparent Detector for Radiotherapy), a 2D pixelated matrix of ionization chambers located upstream to the patient. The signal map obtained with TraDeRa has to be processed to provide medical observables to quantify the quality of the treatment delivery. This relies on accurate Monte Carlo simulations benchmarked with measurements performed under a linear accelerator (Linac).The work described in this paper lies in the optimization of the Linac head simulation and the development of an innovative Monte Carlo/measurements comparison method to perform an accurate enough model of the X-ray production device. An optimized parametrization of the particles transport allowed an increase of the simulation efficiency by a factor 3. The characteristics of an electron beam of a reference Linac were matched with the simulation results by using dose deposition of the created X-ray beam in a water tank. Two parameters are particularly critical: the nominal energy of the electrons and the radial distribution of impact on the target. The innovative method was able to provide within minutes those two parameters for any Linac, achieving, for example, a 10 keV precision on the energy determination for a 6 MV operating Linac

    A New Approach to Background Subtraction in Low-Energy Neutrino Experiments

    Get PDF
    We discuss a new method to extract neutrino signals in low energy experiments. In this scheme the symmetric nature of most backgrounds allows for direct cancellation from data. The application of this technique to the Palo Verde reactor neutrino oscillation experiment allowed us to reduce the measurement errors on the anti-neutrino flux from 20\sim 20% to 10\sim 10%. We expect this method to substantially improve the data quality in future low background experiments such as KamLAND and LENS.Comment: 7 pages, 2 figure

    Fast preparation route to high-performances textured Sr-doped Ca 3 Co 4 O 9 thermoelectric materials through precursor powder modification

    Get PDF
    This work presents a short and very efficientmethod to produce high performance textured Ca3Co4O9thermoelectric materials through initial powders modifica-tion. Microstructure has shown good grain orientation, andlow porosity while slightly lower grain sizes were obtained insamples prepared from attrition milled powders. All samplesshow the high density of around 96% of the theoretical value.These similar characteristics are reflected in, approximately,the same electrical resistivity and Seebeck coefficient valuesfor both types of samples. However, in spite of similar powerfactor (PF) at low temperatures, it is slightly higher at hightemperature for the attrition milled samples. On the otherhand, the processing time reduction (from 38 to 2 h) whenusing attrition milled precursors, leads to lower mechanicalproperties in these samples. All these data clearly point out tothe similar characteristics of both kinds of samples, with adrastic processing time decrease when using attrition milledprecursors, which is of the main economic importance whenconsidering their industrial production

    EDGE: The shape of dark matter haloes in the faintest galaxies

    Full text link
    Collisionless Dark Matter Only (DMO) structure formation simulations predict that Dark Matter (DM) haloes are prolate in their centres and triaxial towards their outskirts. The addition of gas condensation transforms the central DM shape to be rounder and more oblate. It is not clear, however, whether such shape transformations occur in `ultra-faint' dwarfs, which have extremely low baryon fractions. We present the first study of the shape and velocity anisotropy of ultra-faint dwarf galaxies that have gas mass fractions of fgas(r<Rhalf)<0.06f_{\rm gas}(r<R_{\rm half}) < 0.06. These dwarfs are drawn from the Engineering Dwarfs at Galaxy formation's Edge (EDGE) project, using high resolution simulations that allow us to resolve DM halo shapes within the half light radius (100\sim 100\,pc). We show that gas-poor ultra-faints (M200c1.5×109M_{\rm 200c} \leqslant 1.5\times10^9\,M_\odot; fgas<105f_{\rm gas} < 10^{-5}) retain their pristine prolate DM halo shape even when gas, star formation and feedback are included. This could provide a new and robust test of DM models. By contrast, gas-rich ultra-faints (M200c>3×109M_{\rm 200c} > 3\times10^9\,M_\odot; fgas>104f_{\rm gas} > 10^{-4}) become rounder and more oblate within 10\sim 10 half light radii. Finally, we find that most of our simulated dwarfs have significant radial velocity anisotropy that rises to β~>0.5\tilde{\beta} > 0.5 at R3RhalfR \gtrsim 3 R_{\rm half}. The one exception is a dwarf that forms a rotating gas/stellar disc because of a planar, major merger. Such strong anisotropy should be taken into account when building mass models of gas-poor ultra-faints.Comment: 16 pages and 11 figures (excluding appendices), accepted by MNRA

    Predicting Neutron Production from Cosmic-ray Muons

    Get PDF
    Fast neutrons from cosmic-ray muons are an important background to underground low energy experiments. The estimate of such background is often hampered by the difficulty of measuring and calculating neutron production with sufficient accuracy. Indeed substantial disagreement exists between the different analytical calculations performed so far, while data reported by different experiments is not always consistent. We discuss a new unified approach to estimate the neutron yield, the energy spectrum, the multiplicity and the angular distribution from cosmic muons using the Monte Carlo simulation package FLUKA and show that it gives a good description of most of the existing measurements once the appropriate corrections have been applied.Comment: 8 pages, 7 figure

    EDGE: the puzzling ellipticity of Eridanus II's star cluster and its implications for dark matter at the heart of an ultra-faint dwarf

    Full text link
    The Eridanus II (EriII) 'ultra-faint' dwarf has a large (15pc15\,\text{pc}) and low mass (4.3×103M4.3\times10^3\,\text{M}_\odot) star cluster (SC) offset from its centre by 23±3pc23\pm3\,\text{pc} in projection. Its size and offset are naturally explained if EriII has a central dark matter core, but such a core may be challenging to explain in a Λ\LambdaCDM cosmology. In this paper, we revisit the survival and evolution of EriII's SC, focussing for the first time on its puzzlingly large ellipticity (0.310.06+0.050.31^{+0.05}_{-0.06}). We perform a suite of 960 direct NN-body simulations of SCs, orbiting within a range of spherical background potentials fit to ultra-faint dwarf (UFD) galaxy simulations. We find only two scenarios that come close to explaining EriII's SC. In the first, EriII has a low density dark matter core (of size 70pc\sim70\,\text{pc} and density 2×108Mkpc3\lesssim2\times10^8\,\text{M}_{\odot}\,\text{kpc}^{-3}). In this model, the high ellipticity of EriII's SC is set at birth, with the lack of tidal forces in the core allowing its ellipticity to remain frozen in for long times. In the second, EriII's SC orbits in a partial core, with its high ellipticity owing to its imminent tidal destruction. However, this latter model struggles to reproduce the large size of EriII's SC, and it predicts substantial tidal tails around EriII's SC that should have already been seen in the data. This leads us to favour the cored model. We discuss potential caveats to these findings, and the implications of the cored model for galaxy formation and the nature of dark matter.Comment: 16 pages, 12 figures + appendices. Published with MNRAS. Comments welcom

    A fiber injection unit for the Keck Planet Imager and Characterizer (KPIC)

    Get PDF
    Coupling a high-contrast imaging instrument to a high-resolution spectrograph has the potential to enable the most detailed characterization of exoplanet atmospheres, including spin measurements and Doppler mapping. The high-contrast imaging system serves as a spatial filter to separate the light from the star and the planet while the high-resolution spectrograph acts as a spectral filter, which differentiates between features in the stellar and planetary spectra. The Keck Planet Imager and Characterizer (KPIC) located downstream from the current W. M. Keck II adaptive optics (AO) system will contain a fiber injection unit (FIU) combining a high-contrast imaging system and a fiber feed to Keck’s high resolution infrared spectrograph NIRSPEC. Resolved thermal emission from known young giant exoplanets will be injected into a single-mode fiber linked to NIRSPEC, thereby allowing the spectral characterization of their atmospheres. Moreover, the resolution of NIRSPEC (R = 37,500) is high enough to enable spin measurements and Doppler imaging of atmospheric weather phenomenon. The module will be integrated and tested at Caltech before being transferred to Keck in 2018
    corecore