883 research outputs found

    Evaluation of the change in synthetic aperture radar imaging using transfer learning and residual network

    Get PDF
    Change detection from synthetic aperture radar images becomes a key technique to detect change area related to some phenomenon as flood and deformation of the earth surface. This paper proposes a transfer learning and Residual Network with 18 layers (ResNet-18) architecture-based method for change detection from two synthetic aperture radar images. Before the application of the proposed technique, batch denoising using convolutional neural network is applied to the two input synthetic aperture radar image for speckle noise reduction. To validate the performance of the proposed method, three known synthetic aperture radar datasets (Ottawa; Mexican and for Taiwan Shimen datasets) are exploited in this paper. The use of these datasets is important because the ground truth is known, and this can be considered as the use of numerical simulation. The detected change image obtained by the proposed method is compared using two image metrics. The first metric is image quality index that measures the similarity ratio between the obtained image and the image of the ground truth, the second metrics is edge preservation index, it measures the performance of the method to preserve edges. Finally, the method is applied to determine the changed area using two Sentinel 1 B synthetic aperture radar images of Eddahbi dam situated in Morocco

    High energy Coulomb-scattered electrons for relativistic particle beam diagnostics

    Full text link
    A new system used for monitoring energetic Coulomb-scattered electrons as the main diagnostic for accurately aligning the electron and ion beams in the new Relativistic Heavy Ion Collider (RHIC) electron lenses is described in detail. The theory of electron scattering from relativistic ions is developed and applied to the design and implementation of the system used to achieve and maintain the alignment. Commissioning with gold and 3He beams is then described as well as the successful utilization of the new system during the 2015 RHIC polarized proton run. Systematic errors of the new method are then estimated. Finally, some possible future applications of Coulomb-scattered electrons for beam diagnostics are briefly discussed.Comment: 16 pages, 23 figure

    Irritantcy potential and sub acute dermal toxicity study of Pistacia Lentiscus fatty oil as a topical traditional remedy

    Get PDF
    The current study was undertaken to assess safety of Pistacia lentiscus fruits fatty oil (PLFO) as a topical traditional remedy. A primary skin and eye irritation tests were conducted with New Zealand white rabbits to determine the potential for PLFO to produce irritation from a single application. In addition, a sub acute dermal toxicity study was performed on 18 NZW rabbits to evaluate possible adverse effect following application of PLFO for 28 days. Based on the results of the current study, PLFO is classified as slightly irritating to the skin and the eye of rabbits (Primary Irritation Index (P.I.I.) = 1.037; Ocular Irritation Index (O.I.I.) = 5.33 at 1 h). In the sub-acute toxicity test, PLFO produced neither mortality nor significant differences in the body and organ weights between control group and treated rabbits. However, a reversible irritant contact dermatitis was observed in the treated areas from the end of the second week of application until the end of experiment. This local phenomenon was accompanied by a significant skin thickening (P.0.01) since the 12th day (ANOVA, F = 11, 07143, P = 0, 00765) which is confirmed with an inflammatory granuloma in histological study. Haematological analysis and blood chemistry values of the 2 groups showed no significant differences in any of the parameters examined. In summary, PLFO is minimally irritating to the eye and skin after a single exposure, but it may cause irritant contact dermatitis and a reversible thickening of skin after prolonged use.Key words: Pistacia lentiscus, fatty oil, skin, eye, dermatitis, irritation, toxicity

    Analyses of metalorganic chemical-vapor-deposition-grown AlxGa1−xAs/GaAs strained superlattice structures by backscattering spectrometry and x-ray rocking curves

    Get PDF
    Backscattering spectrometry with channeling and x-ray rocking curves have been employed to analyze metalorganic chemical-vapor-deposition-grown AlxGa1−xAs/GaAs strained superlattice structures in significant detail. Both techniques complement each other in the precise determination of composition, thickness, and strain in the individual layers of the superlattices. In addition, the sensitivity of the two techniques allows quantitative measurements of transition regions at the interfaces of various layers. Such fine probing into thin layered superlattice structures provides essential feedback in controlling their growth

    The International Urban Energy Balance Models Comparison Project: First Results from Phase 1

    Get PDF
    A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no com- parison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap- proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux

    Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk

    Get PDF
    Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency Portuguese Foundation for Science and Technology CRESC ALGARVE 2020 European Union (EU) 303745 Maratona da Saude Award DL 57/2016/CP1361/CT0042 SFRH/BPD/99502/2014 CBMR-UID/BIM/04773/2013 POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio

    Retargeted adenoviruses for radiation-guided gene delivery

    Get PDF
    The combination of radiation with radiosensitizing gene delivery or oncolytic viruses promises to provide an advantage that could improve the therapeutic results for glioblastoma. X-rays can induce significant molecular changes in cancer cells. We isolated the GIRLRG peptide that binds to radiation-inducible 78 kDa glucose-regulated protein (GRP78), which is overexpressed on the plasma membranes of irradiated cancer cells and tumor-associated microvascular endothelial cells. The goal of our study was to improve tumor-specific adenovirus-mediated gene delivery by selectively targeting the adenovirus binding to this radiation-inducible protein. We employed an adenoviral fiber replacement approach to conduct a study of the targeting utility of GRP78-binding peptide. We have developed fiber-modified adenoviruses encoding the GRP78-binding peptide inserted into the fiber-fibritin. We have evaluated the reporter gene expression of fiber-modified adenoviruses in vitro using a panel of glioma cells and a human D54MG tumor xenograft model. The obtained results demonstrated that employment of the GRP78-binding peptide resulted in increased gene expression in irradiated tumors following infection with fiber-modified adenoviruses, compared with untreated tumor cells. These studies demonstrate the feasibility of adenoviral retargeting using the GRP78-binding peptide that selectively recognizes tumor cells responding to radiation treatment

    The ALADIN system and its canonical model configurations AROME CY41T1 and ALARO CY40T1

    Get PDF
    The ALADIN System is a numerical weather prediction (NWP) system developed by the international ALADIN consortium for operational weather forecasting and research purposes. It is based on a code that is shared with the global model IFS of the ECMWF and the ARPEGE model of Meteo-France. Today, this system can be used to provide a multitude of high-resolution limited-area model (LAM) configurations. A few configurations are thoroughly validated and prepared to be used for the operational weather forecasting in the 16 partner institutes of this consortium. These configurations are called the ALADIN canonical model configurations (CMCs). There are currently three CMCs: the ALADIN baseline CMC, the AROME CMC and the ALARO CMC. Other configurations are possible for research, such as process studies and climate simulations. The purpose of this paper is (i) to define the ALADIN System in relation to the global counterparts IFS and ARPEGE, (ii) to explain the notion of the CMCs, (iii) to document their most recent versions, and (iv) to illustrate the process of the validation and the porting of these configurations to the operational forecast suites of the partner institutes of the ALADIN consortium. This paper is restricted to the forecast model only; data assimilation techniques and postprocessing techniques are part of the ALADIN System but they are not discussed here
    corecore