494 research outputs found

    B1 SOX Coordinate Cell Specification with Patterning and Morphogenesis in the Early Zebrafish Embryo

    Get PDF
    The B1 SOX transcription factors SOX1/2/3/19 have been implicated in various processes of early embryogenesis. However, their regulatory functions in stages from the blastula to early neurula remain largely unknown, primarily because loss-of-function studies have not been informative to date. In our present study, we systematically knocked down the B1 sox genes in zebrafish. Only the quadruple knockdown of the four B1 sox genes sox2/3/19a/19b resulted in very severe developmental abnormalities, confirming that the B1 sox genes are functionally redundant. We characterized the sox2/3/19a/19b quadruple knockdown embryos in detail by examining the changes in gene expression through in situ hybridization, RT–PCR, and microarray analyses. Importantly, these phenotypic analyses revealed that the B1 SOX proteins regulate the following distinct processes: (1) early dorsoventral patterning by controlling bmp2b/7; (2) gastrulation movements via the regulation of pcdh18a/18b and wnt11, a non-canonical Wnt ligand gene; (3) neural differentiation by regulating the Hes-class bHLH gene her3 and the proneural-class bHLH genes neurog1 (positively) and ascl1a (negatively), and regional transcription factor genes, e.g., hesx1, zic1, and rx3; and (4) neural patterning by regulating signaling pathway genes, cyp26a1 in RA signaling, oep in Nodal signaling, shh, and mdkb. Chromatin immunoprecipitation analysis of the her3, hesx1, neurog1, pcdh18a, and cyp26a1 genes further suggests a direct regulation of these genes by B1 SOX. We also found an interesting overlap between the early phenotypes of the B1 sox quadruple knockdown embryos and the maternal-zygotic spg embryos that are devoid of pou5f1 activity. These findings indicate that the B1 SOX proteins control a wide range of developmental regulators in the early embryo through partnering in part with Pou5f1 and possibly with other factors, and suggest that the B1 sox functions are central to coordinating cell fate specification with patterning and morphogenetic processes occurring in the early embryo

    SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis

    Get PDF
    SOX transcription factors are essential for embryonic development and play critical roles in cell fate determination, differentiation and proliferation. We previously reported that the SOX2 protein is expressed in normal gastric mucosae but downregulated in some human gastric carcinomas. To clarify the roles of SOX2 in gastric carcinogenesis, we carried out functional characterisation of SOX2 in gastric epithelial cell lines. Exogenous expression of SOX2 suppressed cell proliferation in gastric epithelial cell lines. Flow cytometry analysis revealed that SOX2-overexpressing cells exhibited cell-cycle arrest and apoptosis. We found that SOX2-mediated cell-cycle arrest was associated with decreased levels of cyclin D1 and phosphorylated Rb, and an increased p27Kip1 level. These cells exhibited further characteristics of apoptosis, such as DNA laddering and caspase-3 activation. SOX2 hypermethylation signals were observed in some cultured and primary gastric cancers with no or weak SOX2 expression. Among the 52 patients with advanced gastric cancers, those with cancers showing SOX2 methylation had a significantly shorter survival time than those without this methylation (P=0.0062). Hence, SOX2 plays important roles in growth inhibition through cell-cycle arrest and apoptosis in gastric epithelial cells, and the loss of SOX2 expression may be related to gastric carcinogenesis and poor prognosis

    Unc5B Interacts with FLRT3 and Rnd1 to Modulate Cell Adhesion in Xenopus Embryos

    Get PDF
    The FLRT family of transmembrane proteins has been implicated in the regulation of FGF signalling, neurite outgrowth, homotypic cell sorting and cadherin-mediated adhesion. In an expression screen we identified the Netrin receptors Unc5B and Unc5D as high-affinity FLRT3 interactors. Upon overexpression, Unc5B phenocopies FLRT3 and both proteins synergize in inducing cell deadhesion in Xenopus embryos. Morpholino knock-downs of Unc5B and FLRT3 synergistically affect Xenopus development and induce morphogenetic defects. The small GTPase Rnd1, which transmits FLRT3 deadhesion activity, physically and functionally interacts with Unc5B, and mediates its effect on cell adhesion. The results suggest that FLRT3, Unc5B and Rnd1 proteins interact to modulate cell adhesion in early Xenopus development

    The Ocean Reanalyses Intercom parison Project (ORA - IP)

    Get PDF
    Uncertainty in ocean analysis methods and deficiencies in the observing system are major obstacles for the reliable reconstruction of the past ocean climate. The variety of existing ocean reanalyses is exploited in a multi-reanalysis ensemble to improve the ocean state estimation and to gauge uncertainty levels. The ensemble-based analysis of signal-to-noise ratio allows the identification of ocean characteristics for which the estimation is robust (such as tropical mixed-layer-depth,upper ocean heat content), and where large uncertainty exists (deep ocean, Southern Ocean, sea-ice thickness, salinity), providing guidance for future enhancement of the observing and data assimilation systems

    Use of satellite observations for operational oceanography: recent achievements and future prospects

    Get PDF
    The paper gives an overview of the development of satellite oceanography over the past five years focusing on the most relevant issues for operational oceanography. Satellites provide key essential variables to constrain ocean models and/or serve downstream applications. New and improved satellite data sets have been developed and have directly improved the quality of operational products. The status of the satellite constellation for the last five years was, however, not optimal. Review of future missions shows clear progress and new research and development missions with a potentially large impact for operational oceanography should be demonstrated. Improvement of data assimilation techniques and developing synergetic use of high resolution satellite observations are important future priorities

    A Homolog of Subtilisin-Like Proprotein Convertase 7 Is Essential to Anterior Neural Development in Xenopus

    Get PDF
    BACKGROUND: Subtilisin-like Proprotein Convertase 7 (SPC7) is a member of the subtilisin/kexin family of pro-protein convertases. It cleaves many pro-proteins to release their active proteins, including members of the bone morphogenetic protein (BMP) family of signaling molecules. Other SPCs are known to be required during embryonic development but corresponding data regarding SPC7 have not been reported previously. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that Xenopus SPC7 (SPC7) was expressed predominantly in the developing brain and eye, throughout the neural plate initially, then more specifically in the lens and retina primordia as development progressed. Since no prior functional information has been reported for SPC7, we used gain- and loss-of-function experiments to investigate the possibility that it may also convey patterning or tissue specification information similarly to Furin, SPC4, and SPC6. Overexpression of SPC7 was without effect. In contrast, injection of SPC7 antisense morpholino oligonucleotides (MO) into a single blastomere at the 2- or 4-cell stage produced marked disruption of head structures; anophthalmia was salient. Bilateral injections suppressed head and eye formation completely. In parallel with suppression of eye and brain development by SPC7 knockdown, expression of early anterior neural markers (Sox2, Otx2, Rx2, and Pax6) and late eye-specific markers (ÎČ-Crystallin and Opsin), and of BMP target genes such as Tbx2 and Tbx3, was reduced or eliminated. Taken together, these findings suggest a critical role for SPC7-perhaps, at least in part, due to activation of one or more BMPs-in early patterning of the anterior neural plate and its derivatives. CONCLUSION/SIGNIFICANCE: SPC7 is required for normal development of the eye and brain, possibly through processing BMPs, though other potential substrates cannot be excluded
    • 

    corecore