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Synopsis 49 

Uncertainty in ocean analysis methods and deficiencies in the observing system are 50 
major obstacles for the reliable reconstruction of the past ocean climate. The variety of 51 
existing ocean reanalyses is exploited in a multi-reanalysis ensemble to improve the 52 
ocean state estimation and to gauge uncertainty levels. The ensemble-based analysis of 53 
signal-to-noise ratio allows the identification of ocean characteristics for which the 54 
estimation is robust (such as tropical mixed-layer-depth, upper ocean heat content), 55 
and where large uncertainty exists (deep ocean, Southern Ocean, sea-ice thickness, 56 
salinity), providing guidance for future enhancement of the observing and data 57 
assimilation systems. 58 
 59 
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 67 
Introduction 68 

There is increasing demand for historical records of the ocean climate1,2. These are 69 
needed as a reference for monitoring the current state of the climate, and also to 70 
initialize and validate long-range (e.g. seasonal and decadal) forecasts. Observations 71 
alone are often inadequate to generate the required estimate of the ocean variables. 72 
Ocean model simulations can provide some insight on the ocean variability, but they are 73 
affected by biases due to errors in model formulation, specification of initial states and 74 
forcing, and are not directly constrained by observations.  Ocean reanalyses are the 75 
combination of ocean models, atmospheric forcing fluxes and ocean observations via 76 
data assimilation methods and have the potential to provide more accurate information 77 
than observation-only or model-only based ocean estimations.    78 

The production of ocean reanalyses (ORAs hereafter) is now an established activity in 79 
several research and operational centres. ORAs are revisited every so often, and new 80 
‘vintages’ are produced at intervals of about five years, as improvements in ocean 81 
models, data assimilation methods, forcing fluxes or ocean observations become 82 
available.   The previous vintage of ORAs (produced around 2006) has already been 83 
documented3,4. A new vintage has recently been generated, which has come about 84 
through the availability of new surface forcing fluxes (from new atmospheric 85 
reanalyses), improved quality-controlled ocean datasets, including important 86 
corrections to the observations5,6, as well as the steady improvement in the ocean 87 
models and data assimilation methods. There are lower resolution reanalyses (~1 88 
degree horizontal resolution), spanning a long time-period of typically 50 years, as well 89 



 

 

as higher resolution products (about ¼ of degree), available for shorter records, usually 90 
the altimeter period 1993-onwards. 91 

Although new reanalysis vintages are produced relatively infrequently, some of the 92 
ORAs are continuously updated in quasi-real-time, with the model and data assimilation 93 
methodology kept fixed. This is the case for the ORAs produced in operational centres to 94 
initialize coupled forecasts. These real-time ORAs have the additional advantage that 95 
they allow monitoring of relevant climate variables7. The monitoring of the tropical 96 
Pacific conditions with a multi ocean reanalysis system (multi-ORA) is now a reality, as 97 
can be seen in the NCEP ocean monitoring pages ( 98 
http://www.cpc.ncep.noaa.gov/products/GODAS/multiora_body.html ) 99 

In spite of the continuous improvements in methodology, the estimation of the historical 100 
ocean state with reliable error estimates is a major challenge.  In addition to the 101 
estimation of the three-dimensional ocean state at a given time (the analysis problem), 102 
an ocean reanalysis also provides an estimation of the time evolution. The time 103 
evolution represented by an ORA will be sensitive to the temporal variations of the 104 
observing system, to the errors of the ocean model, atmospheric fluxes and assimilation 105 
system, which are often flow-dependent, and not easy to estimate8. All these factors 106 
contribute to the so-called structural uncertainty, i.e. the uncertainty associated with the 107 
methodology and that cannot be sampled with a single system. A crude but pragmatic 108 
way of estimating the current uncertainty in our ability to measure key ocean variables 109 
is to carry out an intercomparison of ORAs within the framework of a multi-reanalysis 110 
ensemble approach.  For it to work, it is necessary that the individual components are 111 
sufficiently distinct while at the same time have similar levels of error (i.e. equally 112 
likely). The multi-analysis ensemble approach has already been successfully used to 113 
study the ocean heat content9,10, and to initialize seasonal11,12 and decadal13,14 forecasts. 114 
The ensemble approach is also used in the framework of the EU funded MyOcean 115 
project15 using eddy-permitting reanalyses over the satellite period (1993-onwards). 116 

The operational oceanographic community continuously carries-out coordinated inter-117 
comparison of ocean forecasting systems16,17,18,19,20,21. In the same way, there is also 118 
need for routine coordinated evaluation of ORAs, which would exploit the existing 119 
information for a variety of purposes, namely  i) quantifying uncertainty, ii) measuring 120 
progress in the quality of the reanalyses and iii)  producing indices for ocean monitoring 121 
with associated error estimates.  These are the motivations for the current Ocean 122 
Reanalyses Intercomparison Project (ORA-IP). This paper offers just a first glimpse of 123 
the emerging results, with focus on the benefits of the ensemble approach both to 124 
improve the estimation of the signals and to provide uncertainty ranges. 125 

The current ORA-IP project 126 
 127 
The joint GODAE OceanView/CLIVAR-GSOP (Global Synthesis and Observation Panel) 128 
workshop in Santa Cruz (13-17 June 2011)22 called for a community action on 129 
exploitation of the latest ORAs for real time climate monitoring and intercomparison. 130 



 

 

Although the ultimate goal is the near real-time monitoring of the ocean through indices 131 
based on an ensemble of reanalyses, the first stage was to complete an ORA-IP.  A viable 132 
proposal was put forward in Santa Cruz. The reanalyses producers were to provide 133 
relevant information (gridded fields of basic primary variables) in agreed formats and 134 
grids (where applicable), to enable the agreed intercomparison procedure to be carried 135 
out.  A “processing centre” would take responsibility for the intercomparison of a 136 
particular variable in which they had a strong interest and expertise. The processing 137 
centres would analyse ensemble statistics based on the input from the individual 138 
reanalyses, and create relevant indices, metrics or graphics that could be directly 139 
compared.  140 
 141 
Table 1:  List of ocean variables inter-compared, and responsible processing institution 142 

Table 2:  List of Ocean Reanalysis products entering the inter-comparison.  143 

 144 
Table 1 provides a list of the variables chosen for intercomparison. Table 2 lists the 145 
ORAs included in the study, and provides some details about the product name, 146 
associated institution, surface forcing, the ocean model, its resolution*, assimilation 147 
method and observations assimilated. The real-time ORAs are shown in blue. The data 148 
assimilation column lists the observation types used for their estimation (T/S for 149 
temperature and salinity; SLA: altimeter-derived sea level anomalies; SSH: sea surface 150 
height -from tide gauges; SST: sea surface temperature, MDT: mean dynamic 151 
topography, SIC: sea-ice concentration), as well as assimilation techniques used for 152 
reanalysis: Optimal Interpolation (OI), Ensemble Kalman Filter (EnKF), Kalman Filters 153 
and Smoothers (KF-FS), Ensemble OI (EnOI), variational methods (3D-var and 4D-var). 154 
Some of the observational products also use statistical techniques such as Empirical 155 
Orthogonal Functions (EOFs). In addition to ORAs, the table also lists products named 156 
Obs-only (OO in what follows), meaning that they are observation-only products that do 157 
not include a dynamical ocean model. The OOs provide sea surface height (SSH) or its 158 
anomaly (SLA), and/or temperature and salinity (T/S) estimates, and sometimes 3D 159 
velocities (U,V), as in the case of ARMOR3D. The atmospheric surface forcing is usually 160 
provided by atmospheric reanalyses, using either direct daily fluxes, or different bulk 161 
formulations. Sometimes the atmospheric reanalysis forcing is corrected (suffix corr in 162 
Table 2), using a variety of methodologies. There are also systems that use fluxes from 163 
coupled data assimilation systems (Coupled DA), which come in multiple flavours 164 
(parameter estimation, EnKF, weakly coupled). The section on “Surface Heat Fluxes” 165 
below provides additional discussion. The detailed description of the analysis systems 166 
joining ORA-IP and their differences is beyond the scope of this paper.  However, more 167 
details about the products can be found in the references given in the table.  168 

                                                             
* Even the low resolution models resolve the Equatorial Rossby Radius of deformation by including meridional 
grid refinement close to the Equator. 
 



 

 

The production centres provided monthly-mean fields interpolated to the standard 1 × 169 
1 degree latitude-longitude grid used by the World Ocean Atlas 200923  (WOA09). Heat 170 
and salinity content, their steric contribution, and assimilation increments of 171 
temperature were provided as vertically integrated quantities from the surface down to 172 
a number of depths: 0-100m; 0-300m; 0-700m; 0-1500m; 0-3000m; and 0-4000m.  173 

The ORAs can be exploited, among other purposes, to assess the strengths and 174 
weakness of the different systems, to identify of gaps in the observing systems, and to 175 
identify robust quantities to use in climate monitoring.. The focus of the results 176 
presented is to identify the commonalities and differences among the existing 177 
reanalyses. To this end, a multi-system ensemble approach is followed, where the signal 178 
and its associated uncertainty are measured by the ensemble mean EM(t) and the 179 
ensemble standard deviation (ESD(t)) respectively, defined as: 180 
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where       denotes an individual reanalysis product. Let us denote the different 182 
signals in a time series (mean, seasonal cycle, interannual variability, etc,...) as the action 183 
of a temporal filter F, and EMF(s) and ESDF(s) the ensemble mean and ensemble 184 
standard deviation of the filtered signal†. We define    

  as the temporal standard 185 
deviation of the filtered ensemble mean EMF(s), and       

  as the quadratic mean of 186 
ensemble spread of the filtered ESDF(s) as follows:   187 
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with       the time mean of the filtered EM,  and MF is the number of independent 189 
temporal samples in the filtered timeseries. The signal-to-noise ratio, defined as the 190 
ratio     

     
 ⁄ , provides guidance on whether the estimation is robust. For instance, 191 

estimations with signal-to-noise less than unity are usually not considered robust. 192 

In what follows, we will use the term EM-ORA, EM-OO to refer respectively to the 193 
ensemble mean of ORAs and OOs. The rest of the article presents a brief overview of the 194 
preliminary results of the intercomparison of the variables listed in Table 1.   195 

Heat Content 196 

Monthly-mean depth integrated potential temperatures (K*m) were used in this study. 197 
The vertically integrated temperature was converted to ocean heat content (OHC) per 198 
unit of area by multiplying by reference values for density (1025 kg m-3) and specific 199 
heat capacity (3985 J Kg-1 K-1). This quantity, further integrated in the horizontal 200 
global domain, and computed relative to a common reference period of 1993-2007, has 201 
been used to estimate changes in the global OHC.  Note that when the timeseries are 202 
dominated by trends, the choice of reference period impacts the time evolution of the 203 

                                                             
†Here s is a generic temporal index associated to the temporal filter.  



 

 

spread among the timeseries‡. The apparent increase in spread among analyses during 204 
the 2000s is substantially reduced if one chooses the 2003-2007 reference period (not 205 
shown).  206 

Time series of global OHC change (Fig. 1) show best agreement for the upper levels and 207 
the products start to diverge as the integration is carried out to deeper levels. The 208 
largest rates of 0-4000m OHC rise during the 1990s exceed 3 Wm-2 (expressed relative 209 
to Earth’s surface area) for some products initialized in the early 1990s and cannot be 210 
considered physical. They are most likely artefacts of system spin-up or “shocks” related 211 
with introduction of the altimeter data. Trends over the period 2000-2009 for 0-4000m 212 
OHC give values between about 0.1 and 0.8 Wm-2. The OOs products ARMOR3D and EN3 213 
are both near the upper end of this range. Ocean heat uptake below 300m appears to 214 
increase markedly in the early 2000s for most products54, qualitatively supporting the 215 
results from the ORAS4 system55, although there is still a large spread in the amplitude 216 
of the OHC, and spatial patterns of change below 300m vary among ocean data 217 
assimilation products (not shown).  The OO products ARMOR3D and EN3 both show a 218 
similar signal of deep ocean heat uptake to ORAS4, illustrating that this signal is 219 
inherent to the observations54. 220 

Fig. 1 also shows that the ensemble spread of the multi-ORA is larger than the ensemble 221 
spread of the ORAS4 system55. Whether this holds for other individual ensemble-based 222 
ORA would need to be evaluated. A more difficult question is whether the multi-ORA 223 
spread is a good estimator of the existing uncertainty. It appears similar to the spread 224 
obtained with observation-only estimations56 . 225 

 Steric Sea Level 226 

Steric sea level (SSL) refers to the change of sea level due to ocean density variations 227 
associated with thermal and haline expansion or contraction of sea-water. SSL rise is 228 
responsible for about 30% to 40% of the total sea level rise during the last decades, 229 
according to recent estimates57,58. The ORA-IP is being used to investigate the steric sea 230 
level variability, by: i) quantifying the global SSL, its uncertainty and consistency with 231 
respect to independent estimates; ii) assessing the regional SSL change and the 232 
agreement among ocean reanalyses; iii) quantifying the relative contributions of the 233 
thermal and haline components and iv) quantifying the relative contributions of 234 
different vertical depth ranges59. Some of these aspects are clearly related with the 235 
ocean heat content variations and with the attribution of sea-level changes, but are not 236 
discussed here. Instead, this section focuses on the performance of the EM-ORA 237 
compared to EM-OO. 238 

SSL can be diagnosed in two different ways: i) as normalized vertical integration of 239 
density anomalies (SSL-density), and ii) as the differences between sea-level and 240 
bottom pressure anomalies (SSL-residual).  The latter is not easy to infer from models, 241 
which are volume-preserving by virtue of the Boussinesq approximation60. Instead, 242 
temperature and salinity monthly means from the ORA and OO products, containing 243 
information from in-situ observations, are used to diagnose SSL-density. Satellite-244 
products are used to derive SSL-residual, thus providing an independent validation data 245 

                                                             
‡ In the case of linear trends, the spread will increase with the distance to the center of 
the reference period. 



 

 

set.   Here we use monthly means of altimetric sea-level anomaly (from AVISO) minus 246 
gravimetric ocean bottom pressure anomaly (from GRACE RL0561, available from 2005).  247 

The top-left panel of Fig.2 depicts the 2005-2009 map of temporal anomaly correlations 248 
between SSL-density from EM-ORA and SSL-residual (altimetry minus gravimetry). The 249 
high values of the correlation suggest high consistency in SSL between two independent 250 
estimates of SSL over most of the Global Ocean. In the Southern Ocean, south of 251 
approximately 60S, where the availability of in situ observations is poor, the correlation 252 
is lower. The top-right panel shows the temporal anomaly correlations, calculated after 253 
the seasonal signal has been removed (i.e. inter-annual signal retained). Although 254 
removing the seasonal cycle decreases the correlation value (especially in the Atlantic 255 
Ocean and at high latitudes), EM-ORA still exhibits high correlations for the inter-annual 256 
signal in the tropical areas and at mid-latitudes. 257 

The correlation between SSL-dens and SSL-residual is higher for EM-ORA (0.84) than 258 
for any individual product (0.77 at the maximum), and also higher than for EM-OO 259 
(0.74, not shown). The latter  is especially evident in areas where the in-situ observing 260 
network is poor and/or where there is impact of deep and bottom waters. The bottom 261 
panels of Fig. 2 show the difference of the anomaly correlation with respect to the 262 
validation dataset between the EM-ORA and the EM-OO for the full (left) and inter-263 
annual (right) signals. The high correlation obtained by EM-ORA emphasizes the added 264 
value of the dynamical constraints and atmospheric forcing included in the ORAs. This is 265 
evident in the full fields (in the Southern Ocean, in the South Atlantic and just south of 266 
the Bering Strait), and especially noticeable for the inter-annual signal. 267 

Although the EM-ORA proves to be a good estimator of total steric height,  uncertainty 268 
still remains regarding the partition into thermal and haline components, and the 269 
contribution of different depth ranges. Preliminary results over a longer 270 
intercomparison period (1993-2009)59 show a large spread regarding the contribution 271 
of deep layers (below 700 m of depth) to SSL trends, with a low signal-to-noise ratio in 272 
the trend estimation of less than 1.  273 

Sea Level 274 

The sea level from the ORAs in Table 2 and two OO products (ARMOR3D and LEGOS) 275 
have been evaluated. (The sea level ARMOR3D is effectively the delayed gridded 276 
AVISO52 product, also called DUACS). This comparison focuses mainly on the 277 
interannual variability and regional distribution of the trend, and it uses globally-278 
detrended monthly means of sea level anomalies. For each product, the seasonal cycle 279 
was removed at each location of the ocean domain. The global mean sea level for each 280 
month was also removed. 281 

Two reference data sets have been used for the evaluation:  sea level from tide gauges, 282 
and the newly reprocessed altimeter-derived sea level from the ESA Climate Change 283 
Initiative (SLCCI)53.  The latter is a gridded dataset where the original altimeter data has 284 
been reprocessed with improved algorithms (orbit, wet tropospheric corrections, 285 
among others) and ancillary data (using improved atmospheric fields  for instance)  in 286 
order to produce consistent time series of sea level for climate studies.  SLCCI has not 287 
been assimilated by any of the products in Table 2, although many of these products 288 
assimilate along-track satellite altimetry (usually AVISO). Only two products (ECCO-v4 289 
and LEGOS) use information from tide gauges.  290 



 

 

The tide gauges used for the evaluation are the same as the subset from the Global Sea 291 
Level Observing System (GLOSS, see http://www.gloss-sealevel.org/) chosen for 292 
evaluation of sea level reconstructions41. Monthly means of sea-level anomaly at the tide 293 
gauge locations were created after removing the effects of tides and inverse barometer 294 
from the original tide gauge data.  This allows a relevant comparison with sea level 295 
anomalies from the reanalysis products because tides and inverse barometer are not 296 
represented in the reanalysis products. The ORAs and OOs were spatially interpolated 297 
to the tide gauge locations. All the time series involved in the analyses were detrended 298 
at each location by removing the product-specific local linear trend. 299 

The comparison with tide gauges appears in the top panels of Fig.3. The statistics are for 300 
the period 1993-2009. Fig. 3a shows the scatter diagram for the individual products 301 
(top-left), with the temporal correlation (x-axis) and the rms error (cm, in the y-axis). A 302 
large scatter in the scores is seen among different products, with the best fit generally 303 
obtained by the products assimilating SLA, and in particular by those with higher 304 
horizontal resolutions, with scores comparable to those obtained by the altimeter-305 
derived SLCCI and AVISO. This result indicates that not all the ORAs are equally likely, 306 
and therefore the grand ensemble mean may not be appropriate to estimate coastal sea-307 
level variations. In this case, the ensemble approach is limited to those products that 308 
assimilate altimeter EM-ORAalti.  Fig. 3b shows the correlation map between tide 309 
gauges and EM-ORAalti. Even with the reduced ensemble, the correlation is higher in 310 
the open ocean than in the continental shelves, and it appears higher in the tropics than 311 
at higher latitudes.  312 

A different application of the multi-ORA ensemble is the definition of climate indices 313 
relevant for regional climate monitoring, which is illustrated in the following (although 314 
more work is needed to define relevant indices).  The sea level variability averaged over 315 
the Eastern North Tropical Pacific region (0-12°N, 84-108°W) has been chosen as an 316 
example, because although different from the traditional equatorial El Niño index, it 317 
reflects the impact El Niño in the Western Coast of Mexico related with the coastal 318 
propagation of Kelvin waves.  In this case, ESACCI is used as validation data set.  All 319 
products show a coherent interannual variability (Fig. 3d), even when altimeter data 320 
are not assimilated, and there is very small spread around EM-ORA (black).  The 321 
variability is dominated by the El Niño 1997-98, and a significant negative trend of ~3-4 322 
mm/y, consistent with the lack of Eastern Pacific ENSO in the last decade, and with the 323 
recently reported strengthening of the Pacific trade winds 55,62,63. Fig. 3c shows the 324 
corresponding Taylor diagram for the different ORAs and OOs averaged over this 325 
region. In contrast with the tide-gauge evaluation, here the scores of the ORAs versus 326 
SLCCI are quite similar (sixteen of the nineteen products show correlations higher than 327 
0.95 and rms differences lower than 1.5 cm). The smallest rms error (around 0.5 cm 328 
rms error, y-axis in Taylor diagram) is achieved by the EM-ORA. The EM-ORA score is 329 
comparable to that achieved by the best members (which assimilate satellite altimetry) 330 
and by AVISO, and is larger than 0.99. EM-ORA has a weaker signal than SLCCI (4.8 331 
instead of 5.2 cm of standard deviation, x-axis in Taylor diagram), a natural 332 
consequence of the ensemble averaging.  333 

In other areas, like the North Atlantic (not shown), there are more discrepancies among 334 
the reanalysis products and weaker signal-to-noise ratios.  Discrepancies can arise from 335 
different choices in the assimilation systems64.  It has been shown that products 336 
assimilating altimeter data can be distinguished from those that do not. The different 337 



 

 

methods used to assimilate altimeter information can also introduce spread. For 338 
instance, the altimeter can be used to constrain only the baroclinic mode, or only the 339 
barotropic mode, or to constrain the fresh water budget, or the three aspects 340 
simultaneously. The altimeter can be assimilated in anomaly mode (using anomaly 341 
values relative to a reference period) or using the absolute values (which implies the 342 
use of an external mean dynamic topography (MDT), which differs between systems).  343 
The ORA-IP can be used to gain insight into the sensitivity arising from the assimilation 344 
methods, but this is beyond the scope of this paper. 345 

Surface Heat Fluxes 346 

The purpose of this comparison is to assess the global heat closure in ORAs, the 347 
consistency of the seasonal cycle and interannual variability between the products, and 348 
to compare with other heat fluxes from a variety of sources (primarily satellite, ships, 349 
buoys and atmospheric reanalysis). These other sources are not completely 350 
independent (with the exception of satellite based radiative fluxes) because they may 351 
also use SST or near surface meteorological data to generate products. Nevertheless, 352 
they enable some assessment of the uncertainty introduced by the reanalysis methods 353 
themselves. Additional datasets include the OAFlux latent and sensible heat flux 354 
product65 combined with ISCCP satellite based radiation66, the ship-based NOC2.0 355 
product67, the Large and Yeager68 hybrid flux dataset CORE.2, and two atmospheric 356 
reanalysis products, the ECMWF ERA-Interim reanalysis69 (referred to as ERAi) and the 357 
NCEP/DOE reanalysis R270 (referred to as NCEP-R2).  358 

Most ORAs are forced with bulk formulae using an atmospheric dataset taken from an 359 
atmospheric reanalysis product. In these cases, assimilation of sea surface temperature 360 
(SST) observations directly influences the net surface heat flux, as the turbulent latent 361 
and heat fluxes, computed from bulk formulae, and the outgoing long wave radiation, 362 
computed using the Stefan-Boltzmann Law, depend on the SSTs. The ORAs can also 363 
close their heat budget through the temperature assimilation increments, since the 364 
vertically integrated temperature assimilation increments, with the appropriate unit 365 
transformation, are equivalent to a heat flux55.  Fig. 4 shows the 17-yr mean globally 366 
integrated heat fluxes for 15 individual ORAs and for the ensemble mean, as well as for 367 
the other global flux products. The interannual variability over the same period is 368 
shown by the error bars.  Most ocean reanalyses have a positive surface imbalance 369 
(mean net surface heat flux into the ocean), usually considerably smaller than for the 370 
observational products, e.g., ISCCP/OAFlux and NOC2.0, and smaller than for 371 
atmospheric reanalyses in some cases. The largest interannual variability is seen for the 372 
PEODAS product which uses ERA-4071 forcing fields until 2002, and NCEP-R2 based 373 
forcing thereafter. Interannual variations over 1993-2009 are only ~1 Wm-2 for the 374 
ensemble of 15 flux estimates. The contributions from the assimilation increments are 375 
mostly negative (removing heat from the ocean on the global average), resulting in a 376 
reduction of the net heat flux. The total net heat flux applied (i.e., surface plus 377 
assimilation) is still positive and mostly smaller than ±2 Wm-2, consistent with reported 378 
warming in global ocean heat content42,55,56. 379 

The seasonal cycle in surface heat fluxes closely agrees in most regions between the 380 
reanalysis products (not shown), with monthly spreads generally being smaller than 381 
10Wm-2 over most of the global ocean, exceptions being the subpolar gyres, the 382 
Southern Ocean and some eastern subtropical basin areas72. Interannual signal-to-noise 383 



 

 

ratios for the surface heat fluxes over the period 1993-2009 show strong signals (2+) in 384 
the ENSO affected regions and perhaps some signals at higher latitudes, but with 385 
signal/noise ~1, longer analysis periods may be needed to identify this variability more 386 
clearly. Regional comparisons are being extended to include individual flux components 387 
(representing radiative and turbulent transfers), and also validation against in situ flux 388 
measurements at a number of OceanSITES moorings72, which provide an independent 389 
check that is not reliably gained from any other source.  390 

Mixed Layer Depth 391 

Mixed layer depth (MLD) is one of the most important variables for both the dynamical 392 
process of climate variation and for biogeochemistry.  Intercomparison of the seasonal 393 
to interannual variability in the global MLD provides a useful gauge of the value of ORAs 394 
for the study of climate variability.   395 

The MLD used in this study is defined as the depth where potential density exceeds the 396 
10-m depth value by Δρ = 0.03 or 0.125 kg m-3 (MLDr003/MLDr0125). Similarly, the 397 
isothermal layer depth (ILD) is defined as the depth where potential temperature 398 
differs from the 10-m depth value by ΔT = 0.2 or 0.5˚C (ILDt02/ILDt05). Different 399 
criteria are used because it is not easy to find a unique threshold that defines the mixed 400 
layer depth at all latitudes. As MLD/ILD verification we use the MILA-GPV73 and 401 
deBoyer74 datasets, also estimated from the individual TS profiles, following the 402 
definitions above.  In particular, MILA-GPV uses only the Argo profiles without 403 
interpolation between grid points, although the spatio-temporal coverage of the dataset 404 
is limited. deBoyer provides the monthly climatological fields (MLDr003 and ILDt02).  405 

The MLD/ILD are calculated from monthly-means of temperature-salinity (TS) fields on 406 
the individual native grids of three OO products (EN3v2a, ARMOR3D, WOA09) and 16 407 
ORAs; these are then interpolated to the regular global longitude-latitude common grid. 408 
EM-ORA is estimated as the ensemble average of individual MLD/ILD on the common 409 
grid (this will differ from the MLD/ILD calculated from the ensemble mean of TS).  The 410 
MLD/ILD from the individual ORAs exhibit various biases in the mean fields depending 411 
on the diversity of model configurations and assimilation systems (not shown). Here we 412 
focus on the evaluation of EM-ORA rather than on the detailed representations of the 413 
individual reanalysis fields, which will be described in future work. 414 

Fig. 5 presents the zonal-mean monthly MLD/ILD normalized differences of EN3v2a, 415 
ARMOR3D, deBoyer, WOA09 and EM-ORA with respect to the MILA-GPV as reference. 416 
Note that values averaged over the Argo-rich 2005-2011 period are plotted for MILA-417 
GPV, EN3v2a, ARMOR3D and EM-ORA, while the climatological fields are provided by 418 
deBoyer and WOA. The differences between deBoyer and MILA-GPV (MLDr003 and 419 
ILDt02) are generally small, since MILA-GPV and deBoyer are comparable datasets that 420 
use individual TS profiles. The larger differences appear in high latitudes, where the 421 
availability of ocean observations is limited. MLDs/ILDs for EN3v2a and ARMOR3D are 422 
biased-shallow due to the use of gridded and monthly mean TS fields. ILDt02s in WOA 423 
are 20 to 40% shallower than MILA-GPV globally, due to the use of the climatological TS 424 
field74. Using larger values for criterion (Δρ = 0.125 kg m-3 and ΔT= 0.5˚C) reduces 425 
the shallow biases. The shallow biases in MLDr0125 and ILDt05 for EN3v2a and 426 
ARMOR3D are generally less than 20% except at high latitudes. We found that a large 427 
portion of these shallow biases result from the coarser vertical resolution of the OO 428 



 

 

gridded TS products at relevant depths compared with the model based reanalyses75. 429 
Model biases do cancel in most areas in the EM, although large positive biases remain in 430 
regions where common biases are well known from coarse resolution models76 (e.g., the 431 
Kuroshio Extension and Antarctic Circumpolar Current regions). In addition, ILDt05 432 
values from WOA, EN3v2a, ARMOR3D and EM-ORA are commonly larger than those 433 
from MILA-GPV in the subarctic regions and Southern Ocean around spring. This is 434 
likely due to the fact that MILA-GPV is the only product that does not use monthly 435 
means of TS when deriving MLD/ILD. This specific topic will be described in future 436 
work. 437 

 438 

Salinity in the top 700m 439 

Salinity variability has a significant impact on the density structure and dynamics of the 440 
ocean. However, it is only in the past few years that assimilation of salinity has received 441 
attention, largely because of the advent of Argo (see http://argo.jcommops. org, which 442 
has significantly improved the sampling of the global ocean salinity), and because of its 443 
importance in obtaining balanced ocean states.  For instance, recent studies on seasonal 444 
forecasts77,78 demonstrate that the assimilation of salinity observations results in 445 
improving ocean states density and T/S properties, resulting in better ENSO prediction. 446 

This study evaluates the averaged salinity in the top 700m of the ocean (S700) as 447 
represented by the EM-ORA and compared it with the EM-OO. As discussed, the ESD-448 
ORA gives an indication of uncertainty, and the signal-to-noise ratio provides guidance 449 
on where the signal measured by the ensemble mean dominates over the noise 450 
measured by the ensemble spread. 451 

Fig. 6a shows the difference of annual mean S700 between EM-ORA and EM-OO in Table 452 
2 over the period 1993-2010. The difference is largest (~0.2 psu) in regions of strong 453 
frontal variability such as the Gulf Stream, Southern Ocean along the Antarctic 454 
Circumpolar Current (ACC) region, and to a lesser extent the Kuroshio region. In the 455 
tropics the difference is generally less than 0.05 psu. 456 

Fig. 6b shows the ESD-ORA of the S700 1993-2010 mean (or     
 , where M denotes 457 

1993-2010 temporal mean). In general the largest spread, up to 0.15 psu, is also 458 
associated with the areas of strong variability or greatest mean difference compared to 459 
the EM-OO analyses. Around most of the ACC, the ESD-ORA is just large enough to 460 
encompass the large differences between EM-ORA and EM-OO. The spread is relatively 461 
large in the eastern equatorial Atlantic and the western equatorial Indian Ocean, where 462 
the spread reaches up to 0.1 psu 463 

Fig. 6c shows the correlation of S700 interannual anomalies between the EM-ORA and 464 
EM-OO for the period 1993-2010. Correlations are relatively high, greater than 0.75, in 465 
the equatorial and sub-equatorial Pacific, particularly in the centre and west. They are 466 
also high in the eastern equatorial Indian Ocean, and throughout parts of the sub-467 
tropical and mid-latitude oceans. Correlations are relatively low, less than 0.5, around 468 
the northern edge of the ACC, Western Indian Ocean and parts of the sub-tropical 469 
Atlantic, particularly downstream of the Mediterranean outflow. Each individual ORA 470 
can be correlated with the EM-OO. Then the spread in this correlation gives an 471 
indication of the disagreement in the estimate of variability between the different 472 



 

 

systems. This is shown in Fig. 6d. There is some correspondence between areas with 473 
large spread and low correlation in Fig.6c, e.g., the northern edge of the ACC in the 474 
Pacific Sector and the northern part of the tropical Atlantic. Equally, the high correlation 475 
in the Tropical Pacific, Eastern Indian Ocean, North East Pacific and North East Atlantic, 476 
where the spread is low, is indicative of consistency between the different estimates. 477 
The Southern Ocean is an exception, presenting relatively large values of the correlation 478 
and large values of spread. 479 

Fig.6e shows the standard deviation of the interannual S700 anomalies (seasonal cycle 480 
removed) of EM-ORA (   

 , where I stands for “interannual”). This gives an estimate of 481 
the amplitude and geographical distribution of the S700 interannual signal, which 482 
appears highest in subduction areas close to the edge of strong boundary currents. It is 483 
also high in the western equatorial Pacific and central Indian Ocean, probably 484 
associated with changes in the fresh-water fluxes. Fig. 6f shows the spread in the S700 485 
monthly anomalies of the ORAs (or     

 ). The spread is largest in the sub-tropics and 486 
mid-latitudes, particularly associated with western boundary currents and the Southern 487 
Ocean. In the western boundary current regions and parts of the Southern Ocean it 488 
exceeds 0.1 psu. The signal-to-noise ratio is greater than 1 in the equatorial west Pacific, 489 
central Indian Ocean and small regions of the mid-latitude ocean. However, over most of 490 
the oceans the signal-to-noise ratio is less than 1.79 491 

An interesting question arising from this study is why the spread appears largest in the 492 
Gulf Stream than in other western boundary currents. One possible explanation is 493 
related to the stronger salinity fronts in this region, such that small variations in the 494 
Gulf Stream path can produce strong salinity anomalies. But other factors can 495 
contribute as well, such as the uncertainty associated with deep-water formation, sea 496 
ice, and a larger uncertainty in the representation of the Gulf Stream path itself 497 
(compared with other western boundary currents). The uncertainty introduced by the 498 
assimilation method cannot be discarded either, and it would be interesting to evaluate 499 
the uncertainty pattern of ocean-model simulations, as well as that of individual 500 
ensemble-based data assimilation systems.  501 

Depth of 20°C Isotherm 502 

Variations in the thermocline depth are associated with major modes of tropical climate 503 
variability. The depth of the 20°C isotherm (D20) has been considered as part of this 504 
intercomparison project as a proxy for thermocline depth and variability in the tropical 505 
oceans. D20 monthly means from the different ORAs in Table 2 and from two OO 506 
products (EN3v2a and ARMOR3D) have been used.   507 

The absolute value of D20 depends on the vertical discretisation of the model used in 508 
each reanalysis. Most of the products have between 16-25 levels in the upper 200-m-509 
depth. There is the small group of eddy-permitting, NEMO based reanalyses, 510 
characterized by high vertical resolution of the upper ocean (1-m in the first level, then 511 
31 levels for the first 200-m depth). There is also some ambiguity regarding the 512 
definition of D20 monthly means included in the evaluations: these can be either 513 
“monthly means of D20 from instantaneous values” or “the D20 from the monthly 514 
means of the temperature field”. In this preliminary diagnostics, different groups have 515 
used different methods.80 516 



 

 

Fig.7 shows the spatial pattern of D20 in the EM-ORA (Fig.7a), the differences between 517 
the two OO products (Fig.7b), and the difference between EM-ORA and each of the OO 518 
products (Fig.7c and Fig.7d). On average, EM-ORA is shallower than the OO products in 519 
the centre of gyres, and deeper on both eastern and western boundaries of the ocean 520 
basins. There are also large differences at the western boundaries, especially along the 521 
Gulf Stream, which may be related with the misrepresentation of the path of western 522 
boundary currents by the models. However, differences along the western boundary 523 
currents are also large between the OO products EN3v2a and ARMOR3D (Fig.7b).  524 
Compared to the OO products, the D20 EM-ORA is slightly deeper in the Equatorial 525 
Indian, Atlantic and Eastern Pacific Oceans, and shallower in the Pacific Warm Pool. The 526 
reasons for this unexpected difference will be investigated in future work. 527 

 528 

Sea-Ice 529 

Several studies have suggested that sea ice thickness may be a predictor for seasonal 530 
sea ice extent81,82. This highlights a weakness in almost all ice forecasting systems in 531 
that they don’t include the explicit assimilation of ice thickness observations. Moreover, 532 
it remains to be seen how the predictability of the seasonal ice cover depends on the 533 
representation of various physical processes and model details, such as spatial 534 
resolution and the inclusion of an ice thickness distribution. By intercomparing various 535 
properties of the sea ice cover in existing ice-ocean reanalyses, it may be possible to 536 
highlight deficiencies and best practises in these systems toward answering the 537 
question: Are current ice-ocean reanalyses suitable for initializing seasonal forecasts of 538 
the ice cover? Here we present preliminary results from this intercomparison. 539 

The ice-ocean reanalyses considered here use a variety of model resolutions, physics 540 
and analysis methods. Reanalysis details are provided in table 2. For the ECMWF 541 
reanalysis system, two additional versions of the system were considered whereby only 542 
the method of ice assimilation was varied (ERAL-linear, ERAN-non-linear83; note that 543 
these products do not appear in Table 2).  544 

Sea ice models used here include two community models, the Los Alamos Community 545 
Ice model (CICE84) and the Louvain sea Ice Model (LIM85), as well as independently 546 
developed models. While these models and their particular implementation details may 547 
vary widely, an important distinction is the representation of the ice thickness 548 
distribution. Some models include a sophisticated multi-category approach, while 549 
others use a single ice category. This different treatment of ice thickness impacts both 550 
ice dynamics and thermodynamics86.  551 

Another important distinction is in the application of ice assimilation. Many systems 552 
employ a simple nudging of ice concentration toward a gridded ice analysis product 553 
(e.g. OSISAF, NSIDC), while a few systems use more sophisticated ice assimilation 554 
methods (e.g. 3DVar, SEEK). However, perhaps the most important aspect of ice 555 
assimilation is in how the increments to concentration affect ice thickness. Two systems 556 
(ECMWF and Mercator) supplied different versions of their reanalyses with/without ice 557 
assimilation and the impact on ice thickness is non-negligible, albeit unconstrained (not 558 
shown). 559 



 

 

Fig. 8 shows an example highlighting the large range of mean ice thicknesses found for 560 
the various ice-ocean reanalyses in March 2007. Also shown is a satellite estimate of the 561 
ice thickness derived from ICESat87 for February/March 2007. In general, the reanalysis 562 
products all exhibit the basic feature of thicker ice cover north of the Canadian Arctic 563 
Archipelago and Greenland as seen in the observations, albeit to a varying degree. 564 
However, the thickness of ice in the central Arctic and along the Siberian coast varies 565 
widely. In particular, the reanalyses tend to cluster toward either overly thin ice (~1m) 566 
or overly thick ice (>3m), with perhaps only one or two showing realistic thicknesses of 567 
about 2m. These differences are larger than interannual variations and are on the scale 568 
of the decadal thinning of the ice cover (not shown). The relative contribution of the 569 
various factors (e.g. model physics and resolution, atmospheric forcing, data 570 
assimilation) that may be contributing to these differences is a topic of on-going study. 571 
Such large biases may limit the usefulness of these products for seasonal forecasting.  572 

Summary 573 

This paper presents the first results of the ORA-IP, which aims at exploiting the 574 
diversity of existing ocean reanalyses to identify those aspects that are robustly 575 
represented by the different products and those where there is a large level of 576 
discrepancy. The agreement can be exploited to define indices for monitoring or 577 
verification, while the discrepancies point towards areas for future enhancement of 578 
assimilation and observing systems. The paper also illustrates the use of independent 579 
evaluation metrics to measure the quality of the ensemble mean and individual 580 
products, thus providing guidance on the adequacy of the ensemble approach.  581 

The intercomparison has focused on a small set of ocean variables, interpolated into a 582 
common horizontal grid, and for a limited set of vertical levels (when applicable).  The 583 
intercomparison period is mainly 1993-2010, although shorter periods are also used. 584 
Where relevant (mixed layer, ocean heat content, steric height, sea level, salinity and 585 
thermocline depth) the ensemble mean of the ocean reanalyses was compared with 586 
observation-only estimates, to assess if the model-derived estimates show any 587 
systematic differences from the observation-only estimates. The ensemble spread is 588 
also used as a measure of the existing uncertainty.  589 

It is shown that in general the ensemble mean is usually a better estimation than any 590 
individual ocean reanalyses. However, in the case of coastal sea level variability, the 591 
evaluation with tide-gauge data indicates that ORAs with high-resolution models and 592 
assimilation of altimeter are more skilful, and the scores are better when using a sub-593 
ensemble including the subset of best ORAs instead of the grand ensemble.  594 

Systematic differences between OOs and ORAs are largest in the tropics, where model-595 
physics and the wind variability are key assets for the ORAs. These differences are seen 596 
in the thermocline and mixed layer depth. In addition, the ensemble of ORAs performs 597 
better than the OO products in the estimation of steric height variability at seasonal and 598 
interannual variability time scales in the Atlantic and outside the tropics.   599 

The surface heat flux estimates from ocean reanalyses were compared with other 600 
products, mostly based on atmospheric reanalyses. Although large uncertainty still 601 
exists, the ocean reanalyses global surface heat fluxes appear more balanced than the 602 
atmospheric-based products, especially when the contribution of the assimilation 603 



 

 

increments is taken into account. The results suggest that data assimilation methods 604 
and ocean observations can contribute to the estimation of surface heat fluxes. 605 

The estimation of interannual variability of salinity continues to be a challenge. Signal-606 
to-noise ratios larger than one are confined to the tropical western Pacific, dominated 607 
by the ENSO signal. This was the case in the previous intercomparison of reanalyses 608 
(circa 2006)3,4, and continues to be so now, in spite of the increased salinity 609 
observations in recent years. More work is needed to establish the source of uncertainty 610 
(changing observing system - e.g. differences before and after Argo, forcing fields, 611 
assimilation methods and error specification). 612 

The intercomparison of sea-ice showed a large uncertainty in the estimation of sea-ice 613 
thickness, which is largely unconstrained by the assimilation methods, highlighting the 614 
need for observations of ice thickness for both assimilation and validation.    615 

This ORA-IP has also identified areas where the uncertainty is large, thus providing a 616 
focus for future developments in the observing system and modelling/data assimilation. 617 
The deep ocean (below the top few hundred metres), the Southern Ocean (Antarctic 618 
Circumpolar Current region), coastal areas and the path of western boundary currents 619 
appear as the areas with largest uncertainty in the density, temperature and salinity 620 
fields. Not only are the differences between ORAs and OO products the largest, but there 621 
is also a large spread among ORAs (as expected from model error), and among OOs 622 
(likely because observation representativeness errors are large).  These are also 623 
important areas for climate.  624 

It is clear that we are still a long way from providing ocean estimations that can answer 625 
satisfactorily many fundamental questions, and that continuous development of the 626 
assimilation and observing system is needed. In the meantime, the multi-model 627 
ensemble strategy is a pragmatic approach to exploit the current resources.  It is also 628 
clear that the evaluation of successive vintages of ocean reanalyses should be a 629 
continuous process, since it is needed to assess progress and to identify gaps, thus 630 
contributing to setting the directions for future developments.  631 
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Tables 905 

Table 1:  List of ocean variables inter-compared, and responsible processing institution 906 

Variable 
Ocean Heat Content MetOffice 
Steric Height CMCC 
Sea Level Mercator Ocean 
Surface Heat Fluxes University Reading 
Mixed Layer Depth MRI/JMA 
Salinity CAWCR 
Depth of 20 degree Isotherm Mercator Ocean 
Sea Ice Env Canada 

 907 

Table 2:  List of Ocean Reanalysis products entering the inter-comparison.  908 

Product Forcing Configuration Data Assim. Method 
ARMOR3D24,25 

CLS 
N/A 1/3° Obs-Only 

(T/S/SSH/U/V) 
OI (SLA/MDT/T/S/SST) 

CFSR26,27 

NOAA NCEP 
Coupled DA 1/2° MOM4 coupled 3DVAR (T/SST/SIC) 

C-GLORS05V328 

CMCC 
ERAi corr+ Bulk 1/2° NEMO3.2 3DVAR (SLA/T/S/SST/SIC) 

ECCO-NRT29 

JPL/NASA 
NCEP-R1+ CORE Bulk 1° MITgcm KF-FS (SLA/T) 

ECCO-v430,31 

MIT/AER/JPL 
ERAi+CORE Bulk  1° MITgcm 4DVAR (SLA/SSH/T/S/SST) 

EN3 v2a32 

Hadley Center 
 N/A  1° Obs-Only (T/S) OI (T/S) 

GECCO233 

U. of Hamburg 
NCEP-R1+Bulk 1°x1/3° MITgcm 4DVAR (SLA/T/S/MDT/SST) 

ECDA34,35 

GFDL/NOAA 
Coupled DA  1/3° MOM4 coupled EnKF (T/S/SST) 



 

 

GloSea536,37 

UK MetOffice 
ERAi+CORE Bulk 1/4° NEMO3.2 3DVAR (SLA/T/S/SST/SIC) 

MERRA Ocean 
GSFC/NASA/GMAO 

Merra + Bulk  
 

1/2° MOM4 EnOI (SLA/T/S/SST/SIC) 

GODAS38 

NOAA NCEP 
NCEP-R2 Flux. 1°x1/3° MOM3 3DVAR (SST/T) 

GLORYS2V1(G2V1) 
Mercator Océan  

ERAi corr+CORE Bulk  1/4° NEMO3.1 KF+3DVAR 
(SLA/T/S/SST/SIC) 

GLORYS2V3(G2V3) 
Mercator Océan  

ERAi corr+ CORE Bulk  1/4° NEMO3.1 KF+3DVAR 
(SLA/T/S/SST/SIC) 

K7-ODA(ESTOC)39 

JAMSTEC/RCGC 
NCEP-R1  corr. Flux 1° MOM3 4DVAR (SLA/T/S/SST) 

K7-CDA40 

JAMSTEC/CEIST 
Coupled DA 1° MOM3 coupled 4DVAR (SLA/SST) 

LEGOS41 

LEGOS 
N/A 1/4° Obs-Only (SL) OI+EOF (SLA/SSH) 

NODC42 

NODC/NOAA 
N/A 1° Obs-only (T/S) OI (T/S) 

PEODAS43 

CAWCR(BoM) 
ERA40 to 2002; NCEP-R2  
thereafter. Flux 

1°x2° MOM2 EnKF (T/S/SST) 

ORAS444,45 

ECMWF 
ERA40 to 1988; ERAi 

thereafter. Flux. 
1° NEMO3 3DVAR (SLA/T/S/SST) 

MOVE-C46 

MRI/JMA 
Coupled DA  1° MRI.COM2 

coupled 
3DVAR (SLA/T/S/SST) 

MOVE-G247 

MRI/JMA 
JRA-55 corr+ Bulk  

 
0.5°x1° MRI.COM3 3DVAR (SLA/T/S/SST) 

MOVE-CORE48,49 

MRI/JMA 
CORE.2 Bulk  0.5°x1° MRI.COM3 3DVAR (T/S) 

SODA50 

U. of Maryland and TAMU 
 

ERA40 to 2002; ERAi 
thereafter. Bulk  

1/4° POP2.1 OI (T/S/SST) 

UR025.451 

U. of Reading 
ERAi + CORE Bulk  1/4° NEMO3.2 OI (SLA/T/S/SST/SIC) 

AVISO52 

CLS 
N/A 

 
1/4° Obs-Only 
(SSH/SLA) 

OI (SLA) 

SLCCI53 

ESA 
N/A 1/4° Obs-Only (SSH) OI (SSH) 
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Figures 914 



 

 

 
 
Fig 1: Time series of global ocean heat content anomaly, relative to a baseline period of 1993-2007. 
Note that SODA only includes grid boxes that span the full column and therefore will tend to 
underestimate OHC changes as the depth of integration increases. ARMOR3D and EN3 are obs-only 
analyses and do not include a dynamic model component. [UoR in legend corresponds to the 
URO25.5 in Table 2]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
Fig 2: 2005-2009 Steric Sea Level anomaly correlation of EM-ORA with respect to the validation 
dataset (altimetry minus gravimetry) described in the text, for the full (top-left) and the inter-
annual signal (top-right). Correlations higher than 0.25 are significant (at the 95% confidence 
level). The bottom panels show the map of differences between the EM-ORA anomaly 
correlation and the EM-OO anomaly correlation for the full (bottom-left) and the inter-annual 
signal (bottom-right). Positive (negative) values indicate that the correlation is higher (lower) 
with EM-ORA than with ORA-OO. 

 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

 926 

 
 
 
 



 

 

 

(a)

 

(b) 
 
 

 
 

 
 

 
 
Fig 3: Top: Comparison between tide gauges and ORAs and OOs, after detrending and removing of 
seasonal cycle:  a) RMS/Correlation diagram for the individual products using GLOSS tide gauge 
data as reference; b) correlations between EM-ORAalti  and tide gauges time series, at tide gauge 
locations. Bottom: Evaluation of a sea level index: c) Taylor diagram using SLCCI as verification; d) 
Index time series, defined as the area-averaged  sea level anomalies over the North-East Tropical 
Pacific region(0-12°N, 84-108°W).  Anomalies and statistics have been computed over the 
1993-2009 period. 
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Fig 4: Time-mean global net  “Surface” heat fluxes (grey bars) and their interannual standard 
deviations (red error bars) over the 17 years (1993 – 2009) spanned by all data sets. The 
15-member ensemble of “Surface” flux products is also shown (dark grey bar), along with 
observation based on atmospheric reanalysis products to the right hand side (orange bars). Eight 
products also have “Assimilation” fluxes (blue bars) computed by integrating the temperature 
increments from the surface down to the bottom, along with “Total” -fluxes, i.e., “Surface” 
+”Assimilation”  fluxes (green bars). Positive is heat flux into the ocean. Units are in Wm-2. 
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Fig 5: Zonal mean monthly MLDs and ILDs from MILA-GPV averaged over 2005-2011 (left column).  
Others: Differences from MILA-GPV, normalized by the MILA-GPV values. 
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S700 Ensemble Statistics (1993-2010) 
 

a)   1993-2010 Mean   Difference   EMORA - EMOO     b)  Ensemble Spread of the 1993-2010 Mean 
 

 
 
c)         Anomaly Correlation (EMORA and EMOO)           d)    Spread in Anomaly Correlation 

 
 
e)  Time-Std of the EM Interannual Anom S700  

 

 
f)     Ensemble Spread of Interannual Anom 

 
 
Fig. 6 a) 1993-2010 mean difference of S700 (Depth-averaged salinity over 0-700m) between EM-
ORA and EM-OO. The interval of colour bar is 0.05 psu. 
b) The ensemble spread of the mean S700 (ESD-ORA).  The interval of colour bar is 0.05 psu. 
c) Temporal correlation of S700 monthly interannual anomalies between the EM-ORA and EM-OO, 
for the period 1993-2010. 
d) Spread of correlation coefficients of S700 anomalies from the individual ORAs. 
e) The inter-annual standard deviation (1993-2010) of EM-ORA S700, representative of  the 
interannual “signal” (    

  . The interval of colour bar is 0.02 psu. 
f) The average ensemble spread of the interannual anomalies of S700 (    

 representing the 
uncertainty or ‘noise’). The interval of colour bar is 0.02 psu. 
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Figure 7: (a) Global map of mean of D20 from EM-ORA.  Differences in mean D20 between  (b) the 
two OO products ARMOR3D and EN3v2,  (c) EM-ORA and  ARMOR3D and (d) EM-ORA and EN3v2.  
Units are m. The mean fields have been calculated over the 2005-2010 periods. 
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Fig. 8: Example of mean sea ice thickness for the various ice-ocean reanalyses for March 2007. Also 
shown is a satellite estimate of sea ice thickness from ICESat (bottom left). 
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