99 research outputs found

    Effect of disorder on the magnetic and electronic structure of a prospective spin-gapless semiconductor MnCrVAl

    Get PDF
    Recent discovery of a new class of materials, spin-gapless semiconductors (SGS), has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics). Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCr-VAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the com- pletely ordered structure is 2.9 μB/f.u., which is different from our experimentally measured value of almost zero. This discrepancy is explained by the structural disorder. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a certain level of disorder, effectively reduces the total magnetic moment to zero. This is consistent with our x-ray diffraction measurements which indicate the presence of A2 disorder in all of our samples. In addition, we also show that B2 disorder does not result in antiferromagnetic exchange coupling and therefore does not significantly reduce the total magnetic moment

    Magnetic and magnetocaloric properties of Co2-xFexVGa Heusler alloys

    Get PDF
    The magnetic and magnetocaloric properties of iron-substituted Co2VGa alloys, Co2-xFexVGa (x = 0, 0.1, 0.15, 0.2, 0.3), were investigated. The Fe-substituted samples, prepared by arc melting, melt spinning, and annealing, crystallized in the L21 Heusler structure, without any secondary phases. The Curie temperature and highfield magnetization at 50 K decreased from 345 K and 44 emu/g (1.90 μB/f.u.) for Co2VGa to 275 K and 39 emu/g (1.66 μB/f.u.) for Co1.7Fe0.3VGa, respectively, but the maximum entropy change remained almost insensitive to Fe concentration for x ≤ 0.2, the highest value being 3.3 J/kgK at 7 T for Co1.85Fe0.15VGa. First-principle calculations show that Co2VGa retains its half-metallic band structure until at least 30% of the cobalt atoms are replaced by Fe atoms. The wide operating temperature window near room temperature and the lack of thermal and magnetic hysteresis are the interesting features of these materials for application in room-temperature magnetic refrigeration

    EMF 35 JMIP study for Japan’s long-term climate and energy policy: scenario designs and key findings

    Get PDF
    In June, 2019, Japan submitted its mid-century strategy to the United Nations Framework Convention on Climate Change and pledged 80% emissions cuts by 2050. The strategy has not gone through a systematic analysis, however. The present study, Stanford Energy Modeling Forum (EMF) 35 Japan Model Intercomparison project (JMIP), employs five energy-economic and integrated assessment models to evaluate the nationally determined contribution and mid-century strategy of Japan. EMF 35 JMIP conducts a suite of sensitivity analyses on dimensions including emissions constraints, technology availability, and demand projections. The results confirm that Japan needs to deploy all of its mitigation strategies at a substantial scale, including energy efficiency, electricity decarbonization, and end-use electrification. Moreover, they suggest that with the absence of structural changes in the economy, heavy industries will be one of the hardest to decarbonize. Partitioning of the sum of squares based on a two-way analysis of variance (ANOVA) reconfirms that mitigation strategies, such as energy efficiency and electrification, are fairly robust across models and scenarios, but that the cost metrics are uncertain. There is a wide gap of policy strength and breadth between the current policy instruments and those suggested by the models. Japan should strengthen its climate action in all aspects of society and economy to achieve its long-term target

    Effect of Fe substitution on the structural, magnetic and electron-transport properties of half-metallic Co2TiSi

    Get PDF
    The structural, magnetic and electron-transport properties of Co2Ti1-xFexSi (x = 0, 0.25, 0.5) ribbons prepared by arc-melting and melt-spinning were investigated. The rapidly quenched Co2Ti0.5Fe0.5Si crystallized in the cubic L21 structure whereas Co2Ti0.75Fe0.25Si and Co2TiFe0Si showed various degrees of B2-type disorder. At room temperature, all the samples are ferromagnetic, and the Curie temperature increased from 360 K for Co2TiSi to about 800 K for Co2Ti0.5Fe0.5Si. The measured magnetization also increased due to partial substitution of Fe for Ti atoms. The ribbons are moderately conducting and show positive temperature coefficient of resistivity with the room temperature resistivity being between 360 µΩcm and 440 µΩcm. The experimentally observed structural and magnetic properties are consistent with the results of first-principle calculations. Our calculations also indicate that the Co2Ti1-xFexSi compound remains nearly half-metallic for x ≤ 0.5. The predicted large band gaps and high Curie temperatures much above room temperature make these materials promising for room temperature spintronic and magnetic applications

    Effect of disorder on the magnetic and electronic structure of a prospective spin-gapless semiconductor MnCrVAl

    Get PDF
    Recent discovery of a new class of materials, spin-gapless semiconductors (SGS), has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics). Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCrVAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the completely ordered structure is 2.9 µB/f.u., which is different from our experimentally measured value of almost zero. This discrepancy is explained by the structural disorder. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a certain level of disorder, effectively reduces the total magnetic moment to zero. This is consistent with our x-ray diffraction measurements which indicate the presence of A2 disorder in all of our samples. In addition, we also show that B2 disorder does not result in antiferromagnetic exchange coupling and therefore does not significantly reduce the total magnetic moment

    Magnetic and magnetocaloric properties of Co2-xFexVGa Heusler alloys

    Get PDF
    The magnetic and magnetocaloric properties of iron-substituted Co2VGa alloys, Co2-xFexVGa (x = 0, 0.1, 0.15, 0.2, 0.3), were investigated. The Fe-substituted samples, prepared by arc melting, melt spinning, and annealing, crystallized in the L2(1) Heusler structure, without any secondary phases. The Curie temperature and high-field magnetization at 50 K decreased from 345 K and 44 emu/g (1.90 mu(B)/f.u.) for Co2VGa to 275 K and 39 emu/g (1.66 mu(B)/f.u.) for Co1.7Fe0.3VGa, respectively, but the maximum entropy change remained almost insensitive to Fe concentration for x 1.85Fe0.15VGa. First-principle calculations show that Co2VGa retains its half-metallic band structure until at least 30% of the cobalt atoms are replaced by Fe atoms. The wide operating temperature window near room temperature and the lack of thermal and magnetic hysteresis are the interesting features of these materials for application in room-temperature magnetic refrigeration. (c) 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.500664

    Gene Expression Profiling in Limb-Girdle Muscular Dystrophy 2A

    Get PDF
    Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that β-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies

    C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility

    Get PDF
    Meiotic recombination generates crossovers between homologous chromosomes that are essential for genome haploidization. The synaptonemal complex is a ‘zipper’-like protein assembly that synapses homologue pairs together and provides the structural framework for processing recombination sites into crossovers. Humans show individual differences in the number of crossovers generated across the genome. Recently, an anonymous gene variant in C14ORF39/SIX6OS1 was identified that influences the recombination rate in humans. Here we show that C14ORF39/SIX6OS1 encodes a component of the central element of the synaptonemal complex. Yeast two-hybrid analysis reveals that SIX6OS1 interacts with the well-established protein synaptonemal complex central element 1 (SYCE1). Mice lacking SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes an arrest at the pachytene-like stage and results in infertility. In accordance with its role as a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate processing of intermediate recombination nodules before crossover formation.This work was supported by BFU_2014-59307-R, MEIONet and JCyLe (CSI052U16). LGH and NFM are supported by European Social Fund/JCyLe grants (EDU/1083/2013 and EDU/310/2015). ORD is a Sir Henry Dale Fellow jointly funded by the Wellcome Trust and Royal Society (Grant Number 104158/Z/14/Z). RB is funded by DFG (grant Be1168/8-1). AT and ID were supported by DFG grants TO421/8-2 and TO421/6-1, respectively.Peer reviewe

    A Phylogenetic Perspective on the Evolution of Mediterranean Teleost Fishes

    Get PDF
    The Mediterranean Sea is a highly diverse, highly studied, and highly impacted biogeographic region, yet no phylogenetic reconstruction of fish diversity in this area has been published to date. Here, we infer the timing and geographic origins of Mediterranean teleost species diversity using nucleotide sequences collected from GenBank. We assembled a DNA supermatrix composed of four mitochondrial genes (12S ribosomal DNA, 16S ribosomal DNA, cytochrome c oxidase subunit I and cytochrome b) and two nuclear genes (rhodopsin and recombination activating gene I), including 62% of Mediterranean teleost species plus 9 outgroups. Maximum likelihood and Bayesian phylogenetic and dating analyses were calibrated using 20 fossil constraints. An additional 124 species were grafted onto the chronogram according to their taxonomic affinity, checking for the effects of taxonomic coverage in subsequent diversification analyses. We then interpreted the time-line of teleost diversification in light of Mediterranean historical biogeography, distinguishing non-endemic natives, endemics and exotic species. Results show that the major Mediterranean orders are of Cretaceous origin, specifically ∼100–80 Mya, and most Perciformes families originated 80–50 Mya. Two important clade origin events were detected. The first at 100–80 Mya, affected native and exotic species, and reflects a global diversification period at a time when the Mediterranean Sea did not yet exist. The second occurred during the last 50 Mya, and is noticeable among endemic and native species, but not among exotic species. This period corresponds to isolation of the Mediterranean from Indo-Pacific waters before the Messinian salinity crisis. The Mediterranean fish fauna illustrates well the assembly of regional faunas through origination and immigration, where dispersal and isolation have shaped the emergence of a biodiversity hotspot
    • …
    corecore