92 research outputs found

    Simultaneous segmentation of the left and right heart ventricles in 3D cine MR images of small animals

    Get PDF
    New high resolution image techniques allow to capture the anatomy and movement of the heart of small animals. The availability of these in vivo images can be very useful for medical research, however the amount of generated data for large animal studies makes manual analysis a very tedious task. To cope with the problem of automatic analysis of these images, we propose the use of the Deformable Elastic Template method to perform automatic segmentation of the ventricles. To adapt the method to the specificities of high-resolution MRI, several improvements are presented, including an image-context dependent scheme for more robust segmentation. Qualitative results show that our method is able to correctly retrieve the heart’s contours in 3D. 1

    Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions

    Get PDF
    Mapping of the longitudinal relaxation time (T1) and extracellular volume (ECV) offers a means of identifying pathological changes in myocardial tissue, including diffuse changes that may be invisible to existing T1-weighted methods. This technique has recently shown strong clinical utility for pathologies such as Anderson- Fabry disease and amyloidosis and has generated clinical interest as a possible means of detecting small changes in diffuse fibrosis; however, scatter in T1 and ECV estimates offers challenges for detecting these changes, and bias limits comparisons between sites and vendors. There are several technical and physiological pitfalls that influence the accuracy (bias) and precision (repeatability) of T1 and ECV mapping methods. The goal of this review is to describe the most significant of these, and detail current solutions, in order to aid scientists and clinicians to maximise the utility of T1 mapping in their clinical or research setting. A detailed summary of technical and physiological factors, issues relating to contrast agents, and specific disease-related issues is provided, along with some considerations on the future directions of the field. Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions. Available from: https://www.researchgate.net/publication/317548806_Towards_accurate_and_precise_T1_and_extracellular_volume_mapping_in_the_myocardium_a_guide_to_current_pitfalls_and_their_solutions [accessed Jun 13, 2017]

    Cardiac lymphatics in health and disease

    Get PDF
    The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.Peer reviewe

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging

    Fast T2 gradient-spin-echo (T2-GraSE) mapping for myocardial edema quantification: first in vivo validation in a porcine model of ischemia/reperfusion

    Get PDF
    BACKGROUND: Several T2-mapping sequences have been recently proposed to quantify myocardial edema by providing T2 relaxation time values. However, no T2-mapping sequence has ever been validated against actual myocardial water content for edema detection. In addition, these T2-mapping sequences are either time-consuming or require specialized software for data acquisition and/or post-processing, factors impeding their routine clinical use. Our objective was to obtain in vivo validation of a sequence for fast and accurate myocardial T2-mapping (T2 gradient-spin-echo [GraSE]) that can be easily integrated in routine protocols. METHODS: The study population comprised 25 pigs. Closed-chest 40 min ischemia/reperfusion was performed in 20 pigs. Pigs were sacrificed at 120 min (n = 5), 24 h (n = 5), 4 days (n = 5) and 7 days (n = 5) after reperfusion, and heart tissue extracted for quantification of myocardial water content. For the evaluation of T2 relaxation time, cardiovascular magnetic resonance (CMR) scans, including T2 turbo-spin-echo (T2-TSE, reference standard) mapping and T2-GraSE mapping, were performed at baseline and at every follow-up until sacrifice. Five additional pigs were sacrificed after baseline CMR study and served as controls. RESULTS: Acquisition of T2-GraSE mapping was significantly (3-fold) faster than conventional T2-TSE mapping. Myocardial T2 relaxation measurements performed by T2-TSE and T2-GraSE mapping demonstrated an almost perfect correlation (R(2) = 0.99) and agreement with no systematic error between techniques. The two T2-mapping sequences showed similarly good correlations with myocardial water content: R(2) = 0.75 and R(2) = 0.73 for T2-TSE and T2-GraSE mapping, respectively. CONCLUSIONS: We present the first in vivo validation of T2-mapping to assess myocardial edema. Given its shorter acquisition time and no requirement for specific software for data acquisition or post-processing, fast T2-GraSE mapping of the myocardium offers an attractive alternative to current CMR sequences for T2 quantification

    Defining myocardial fibrosis in haemodialysis patients with non-contrast cardiac magnetic resonance

    Get PDF
    Background: Extent of myocardial fibrosis (MF) determined using late gadolinium enhanced (LGE) predicts outcomes, but gadolinium is contraindicated in advanced renal disease. We assessed the ability of native T1-mapping to identify and quantify MF in aortic stenosis patients (AS) as a model for use in haemodialysis patients. Methods: We compared the ability to identify areas of replacement-MF using native T1-mapping to LGE in 25 AS patients at 3 T. We assessed agreement between extent of MF defined by LGE full-width-half-maximum (FWHM) and the LGE 3-standard-deviations (3SD) in AS patients and nine T1 thresholding-techniques, with thresholds set 2-to-9 standard-deviations above normal-range (1083 ± 33 ms). A further technique was tested that set an individual T1-threshold for each patient (T11SD). The technique that agreed most strongly with FWHM or 3SD in AS patients was used to compare extent of MF between AS (n = 25) and haemodialysis patients (n = 25). Results: Twenty-six areas of enhancement were identified on LGE images, with 25 corresponding areas of discretely increased native T1 signal identified on T1 maps. Global T1 was higher in haemodialysis than AS patients (1279 ms ± 5.8 vs 1143 ms ± 12.49, P < 0.01). No signal-threshold technique derived from standard-deviations above normal-range associated with FWHM or 3SD. T11SD correlated with FWHM in AS patients (r = 0.55) with moderate agreement (ICC = 0.64), (but not with 3SD). Extent of MF defined by T11SD was higher in haemodialysis vs AS patients (21.92% ± 1 vs 18.24% ± 1.4, P = 0.038), as was T1 in regions-of-interest defined as scar (1390 ± 8.7 vs 1276 ms ± 20.5, P < 0.01). There was no difference in the relative difference between remote myocardium and regions defined as scar, between groups (111.4 ms ± 7.6 vs 133.2 ms ± 17.5, P = 0.26). Conclusions: Areas of MF are identifiable on native T1 maps, but absolute thresholds to define extent of MF could not be determined. Histological studies are needed to assess the ability of native-T1 signal-thresholding techniques to define extent of MF in haemodialysis patients. Data is taken from the PRIMID-AS (NCT01658345) and CYCLE-HD studies (ISRCTN11299707)

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
    corecore