163 research outputs found
The Effects of "Flipped Classroom" Concept on the Effectiveness of Teaching
A lesson study project is carried out to examine various teaching methodologies on the studentsâ learning through support from the Office of Professional and Instructional Development (OPID) of University of Wisconsin System. The study involves a diverse body of faculty and students affiliated with three different programs on campus. One of the methodologies of interest is the âflipped classroomâ concept in the teaching community. In this work, flipped classroom activities are conducted in teaching one engineering and technology course titled with âFundamentals of Plastics Materials and Processingâ (MFGTâ251). Particularly, the concept is incorporated in two series of lectures on injection molding, blow molding and thermoforming. Studentâs performance is evaluated through laboratory assignments, quizzes, and exams. Results on studentsâ learning and the feedbacks from the students are presented. The implication of the results will also be discussed
Inferring Gene Regulatory Network from Bayesian Network Model Based on Re-Sampling
Nowadays, gene chip technology has rapidly produced a wealth of information about gene expression activities. But the time-series expression data present a phenomenon that the number of genes is in thousands and the number of experimental data is only a few dozen. For such cases, it is difficult to learn network structure from such data. And the result is not ideal. So it needs to take measures to expand the capacity of the sample. In this paper, the Block bootstrap re-sampling method is utilized to enlarge the small expression data. At the same time, we apply âK2+Tâ algorithm to Yeast cell cycle gene expression data. Seeing from the experimental results and comparing with the semi-fixed structure EM learning algorithm, our proposed method is successful in constructing gene networks that capture much more known relationships as well as several unknown relationships which are likely to be novel
An Image Encryption Scheme Based on DNA Computing and Cellular Automata
Networks have developed very quickly, allowing the speedy transfer of image information through Internet. However, the openness of these networks poses a serious threat to the security of image information. The field of image encryption has drawn attention for this reason. In this paper, the concepts of 1-dimensional DNA cellular automata and T-DNA cellular automata are defined, and the concept of reversible T-DNA cellular automata is introduced. An efficient approach to encryption involving reversible T-DNA cellular automata as an encryption tool and natural DNA sequences as the main keys is here proposed. The results of a simulation experiment, performance analysis, and comparison to other encryption algorithms showed this algorithm to be capable of resisting brute force attacks, statistical attacks, and differential attacks. It also enlarged the key space enormously. It meets the criteria for one-time pad and resolves the problem that one-time pad is difficult to save
A Comparative Study on Root Canal Repair Materials: A Cytocompatibility Assessment in L929 and MG63 Cells
Cytocompatibility of repair materials plays a significant role in the success of root canal repair. We conducted a comparative study on the cytocompatibility among iRoot BP Plus, iRoot FS, ProRoot MTA, and Super-EBA in L929 cells and MG63 cells. The results revealed that iRoot FS was able to completely solidify within 1 hour. iRoot BP Plus required 7-day incubation, which was much longer than expected (2 hours), to completely set. ProRoot MTA and Super-EBA exhibited a similar setting duration of 12 hours. All the materials except Super-EBA possessed negligible in vitro cytotoxicity. iRoot FS had the best cell adhesion capacity in both L929 and MG63 cells. With rapid setting, negligible cytotoxicity, and enhanced cell adhesion capacity, iRoot FS demonstrated great potential in clinical applications. Future work should focus on longer-term in vitro cytocompatibility and an in vivo assessment
Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis
Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs), derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering
Layer-by-Layer Epitaxy of Multilayer MoS2 Wafers
Two-dimensional (2D) semiconductor of MoS2 has great potential for advanced
electronics technologies beyond silicon1-9. So far, high-quality monolayer MoS2
wafers10-12 are already available and various demonstrations from individual
transistors to integrated circuits have also been shown13-15. In addition to
the monolayer, multilayers have narrower band gaps but improved carrier
mobilities and current capacities over the monolayer5,16-18. However, achieving
high-quality multilayer MoS2 wafers remains a challenge. Here we report the
growth of high quality multilayer MoS2 4-inch wafers via the layer-by-layer
epitaxy process. The epitaxy leads to well-defined stacking orders between
adjacent epitaxial layers and offers a delicate control of layer numbers up to
6. Systematic evaluations on the atomic structures and electronic properties
were carried out for achieved wafers with different layer numbers. Significant
improvements on device performances were found in thicker-layer field effect
transistors (FETs), as expected. For example, the average field-effect mobility
({\mu}FE) at room temperature (RT) can increase from ~80 cm2V-1s-1 for
monolayer to ~110/145 cm2V-1s-1 for bilayer/trilayer devices. The highest RT
{\mu}FE=234.7 cm2V-1s-1 and a record-high on-current densities of 1.704
mA{\mu}m-1 at Vds=2 V were also achieved in trilayer MoS2 FETs with a high
on/off ratio exceeding 107. Our work hence moves a step closer to practical
applications of 2D MoS2 in electronics.Comment: 13 pages,4 Figure
PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST
We describe PSR J1926-0652, a pulsar recently discovered with the
Five-hundred-meter Aperture Spherical radio Telescope (FAST). Using sensitive
single-pulse detections from FAST and long-term timing observations from the
Parkes 64-m radio telescope, we probed phenomena on both long and short time
scales. The FAST observations covered a wide frequency range from 270 to 800
MHz, enabling individual pulses to be studied in detail. The pulsar exhibits at
least four profile components, short-term nulling lasting from 4 to 450 pulses,
complex subpulse drifting behaviours and intermittency on scales of tens of
minutes. While the average band spacing P3 is relatively constant across
different bursts and components, significant variations in the separation of
adjacent bands are seen, especially near the beginning and end of a burst. Band
shapes and slopes are quite variable, especially for the trailing components
and for the shorter bursts. We show that for each burst the last detectable
pulse prior to emission ceasing has different properties compared to other
pulses. These complexities pose challenges for the classic carousel-type
models.Comment: 13pages with 12 figure
Ciliary parathyroid hormone signaling activates transforming growth factor-ÎČ to maintain intervertebral disc homeostasis during aging
© 2018 The Author(s). Degenerative disc disease (DDD) is associated with intervertebral disc degeneration of spinal instability. Here, we report that the cilia of nucleus pulposus (NP) cells mediate mechanotransduction to maintain anabolic activity in the discs. We found that mechanical stress promotes transport of parathyroid hormone 1 receptor (PTH1R) to the cilia and enhances parathyroid hormone (PTH) signaling in NP cells. PTH induces transcription of integrin αvÎČ6 to activate the transforming growth factor (TGF)-ÎČ-connective tissue growth factor (CCN2)-matrix proteins signaling cascade. Intermittent injection of PTH (iPTH) effectively attenuates disc degeneration of aged mice by direct signaling through NP cells, specifically improving intervertebral disc height and volume by increasing levels of TGF-ÎČ activity, CCN2, and aggrecan. PTH1R is expressed in both mouse and human NP cells. Importantly, knockout PTH1R or cilia in the NP cells results in significant disc degeneration and blunts the effect of PTH on attenuation of aged discs. Thus, mechanical stress-induced transport of PTH1R to the cilia enhances PTH signaling, which helps maintain intervertebral disc homeostasis, particularly during aging, indicating therapeutic potential of iPTH for DDD
A phase separation method for analyses of fluoroquinones in meats based on ultrasound-assisted salt-induced liquidâliquid microextraction and a new integrated device
Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted, salt-induced, liquid-liquid microextraction for determination of five fluoroquinones in meats by HPLC analysis. The novel integrated device consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 589ÎŒL of acetone solvent, pH2.1, 4.1min extraction time and 3.5g of Na2SO4. The limits of detection were 0.056-0.64 ÎŒgkg(-1) and recoveries were 87.2-110.6% for the five fluoroquinones in muscle tissue from fish, chicken, pork and beef. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinones in meat samples
- âŠ