118 research outputs found

    Proximal Symmetric Non-negative Latent Factor Analysis: A Novel Approach to Highly-Accurate Representation of Undirected Weighted Networks

    Full text link
    An Undirected Weighted Network (UWN) is commonly found in big data-related applications. Note that such a network's information connected with its nodes, and edges can be expressed as a Symmetric, High-Dimensional and Incomplete (SHDI) matrix. However, existing models fail in either modeling its intrinsic symmetry or low-data density, resulting in low model scalability or representation learning ability. For addressing this issue, a Proximal Symmetric Nonnegative Latent-factor-analysis (PSNL) model is proposed. It incorporates a proximal term into symmetry-aware and data density-oriented objective function for high representation accuracy. Then an adaptive Alternating Direction Method of Multipliers (ADMM)-based learning scheme is implemented through a Tree-structured of Parzen Estimators (TPE) method for high computational efficiency. Empirical studies on four UWNs demonstrate that PSNL achieves higher accuracy gain than state-of-the-art models, as well as highly competitive computational efficiency

    A Dynamic Linear Bias Incorporation Scheme for Nonnegative Latent Factor Analysis

    Full text link
    High-Dimensional and Incomplete (HDI) data is commonly encountered in big data-related applications like social network services systems, which are concerning the limited interactions among numerous nodes. Knowledge acquisition from HDI data is a vital issue in the domain of data science due to their embedded rich patterns like node behaviors, where the fundamental task is to perform HDI data representation learning. Nonnegative Latent Factor Analysis (NLFA) models have proven to possess the superiority to address this issue, where a linear bias incorporation (LBI) scheme is important in present the training overshooting and fluctuation, as well as preventing the model from premature convergence. However, existing LBI schemes are all statistic ones where the linear biases are fixed, which significantly restricts the scalability of the resultant NLFA model and results in loss of representation learning ability to HDI data. Motivated by the above discoveries, this paper innovatively presents the dynamic linear bias incorporation (DLBI) scheme. It firstly extends the linear bias vectors into matrices, and then builds a binary weight matrix to switch the active/inactive states of the linear biases. The weight matrix's each entry switches between the binary states dynamically corresponding to the linear bias value variation, thereby establishing the dynamic linear biases for an NLFA model. Empirical studies on three HDI datasets from real applications demonstrate that the proposed DLBI-based NLFA model obtains higher representation accuracy several than state-of-the-art models do, as well as highly-competitive computational efficiency.Comment: arXiv admin note: substantial text overlap with arXiv:2306.03911, arXiv:2302.12122, arXiv:2306.0364

    Associations between homocysteine, vitamin B12, and folate and the risk of all-cause mortality in American adults with stroke

    Get PDF
    ObjectiveAssociations between plasma homocysteine (Hcy), vitamin B12, and folate and the risk of all-cause mortality are unclear. This study aimed to examine whether plasma Hcy, vitamin B12, and folate levels independently predict the risk of all-cause mortality in American adults with stroke.MethodsData from the United States National Health and Examination Survey (NHANES; 1999–2006) were used and linked with the latest (2019) National Death Index (NDI). Cox proportional hazards models and restricted cubic splines were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI) of all-cause mortality for Hcy, folate, and B12 levels in adults with stroke. Sample weights were calculated to ensure the generalizability of the results.ResultsA total of 431 participants were included (average age: 64.8 years). During a median follow-up of 10.4 years, 316 deaths occurred. Hcy was positively associated with all-cause mortality in adults with stroke (HR, 1.053; 95% CI: 1.026–1.080). Stroke patients with plasma Hcy levels in the fourth quartile had a 1.631-fold higher risk of all-cause mortality (HR, 1.631; 95% CI: 1.160–2.291) than those in the first quartile. The association between plasma Hcy and all-cause mortality was strong significant in older patients (p for interaction = 0.020). Plasma folate and vitamin B12 concentrations were inversely correlated with Hcy concentrations [B-value (95% CI): −0.032 (−0.056– −0.008), −0.004 (−0.007– −0.002), respectively]. No significant associations were observed between folate, vitamin B12 levels, and all-cause mortality in adults with stroke.ConclusionPlasma Hcy levels were positively associated with all-cause mortality in older adults with stroke. Folate and vitamin B12 levels were inversely correlated with Hcy. Plasma Hcy may serve as a useful predictor in mortality risk assessment and targeted intervention in adults with stroke

    Analysis of Product Sampling for New Product Diffusion Incorporating Multiple-Unit Ownership

    Get PDF
    Multiple-unit ownership of nondurable products is an important component of sales in many product categories. Based on the Bass model, this paper develops a new model considering the multiple-unit adoptions as a diffusion process under the influence of product sampling. Though the analysis aims to determine the optimal dynamic sampling effort for a firm and the results demonstrate that experience sampling can accelerate the diffusion process, the best time to send free samples is just before the product being launched. Multiple-unit purchasing behavior can increase sales to make more profit for a firm, and it needs more samples to make the product known much better. The local sensitivity analysis shows that the increase of both external coefficients and internal coefficients has a negative influence on the sampling level, but the internal influence on the subsequent multiple-unit adoptions has little significant influence on the sampling. Using the logistic regression along with linear regression, the global sensitivity analysis gives a whole analysis of the interaction of all factors, which manifests the external influence and multiunit purchase rate are two most important factors to influence the sampling level and net present value of the new product, and presents a two-stage method to determine the sampling level

    Boosting Video Object Segmentation via Space-time Correspondence Learning

    Full text link
    Current top-leading solutions for video object segmentation (VOS) typically follow a matching-based regime: for each query frame, the segmentation mask is inferred according to its correspondence to previously processed and the first annotated frames. They simply exploit the supervisory signals from the groundtruth masks for learning mask prediction only, without posing any constraint on the space-time correspondence matching, which, however, is the fundamental building block of such regime. To alleviate this crucial yet commonly ignored issue, we devise a correspondence-aware training framework, which boosts matching-based VOS solutions by explicitly encouraging robust correspondence matching during network learning. Through comprehensively exploring the intrinsic coherence in videos on pixel and object levels, our algorithm reinforces the standard, fully supervised training of mask segmentation with label-free, contrastive correspondence learning. Without neither requiring extra annotation cost during training, nor causing speed delay during deployment, nor incurring architectural modification, our algorithm provides solid performance gains on four widely used benchmarks, i.e., DAVIS2016&2017, and YouTube-VOS2018&2019, on the top of famous matching-based VOS solutions.Comment: CVPR 2023; Project page: https://github.com/wenguanwang/VOS_Correspondenc

    Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2006 Elsevier Ltd.This Letter is concerned with the global asymptotic stability analysis problem for a class of uncertain stochastic Hopfield neural networks with discrete and distributed time-delays. By utilizing a Lyapunov–Krasovskii functional, using the well-known S-procedure and conducting stochastic analysis, we show that the addressed neural networks are robustly, globally, asymptotically stable if a convex optimization problem is feasible. Then, the stability criteria are derived in terms of linear matrix inequalities (LMIs), which can be effectively solved by some standard numerical packages. The main results are also extended to the multiple time-delay case. Two numerical examples are given to demonstrate the usefulness of the proposed global stability condition.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    A note on control of a class of discrete-time stochastic systems with distributed delays and nonlinear disturbances

    Get PDF
    The official published version of this article can be found at the link below.This paper is concerned with the state feedback control problem for a class of discrete-time stochastic systems involving sector nonlinearities and mixed time-delays. The mixed time-delays comprise both discrete and distributed delays, and the sector nonlinearities appear in the system states and all delayed states. The distributed time-delays in the discrete-time domain are first defined and then a special matrix inequality is developed to handle the distributed time-delays within an algebraic framework. An effective linear matrix inequality (LMI) approach is proposed to design the state feedback controllers such that, for all admissible nonlinearities and time-delays, the overall closed-loop system is asymptotically stable in the mean square sense. Sufficient conditions are established for the nonlinear stochastic time-delay systems to be asymptotically stable in the mean square sense, and then the explicit expression of the desired controller gains is derived. A numerical example is provided to show the usefulness and effectiveness of the proposed design method.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60774073 and 60974030, the National 973 Program of China under Grant 2009CB320600, and the Alexander von Humboldt Foundation of Germany

    H∞ filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier Ltd.In this paper, we deal with the robust H∞ filtering problem for a class of uncertain nonlinear time-delay stochastic systems. The system under consideration contains parameter uncertainties, Itô-type stochastic disturbances, time-varying delays, as well as sector-bounded nonlinearities. We aim at designing a full-order filter such that, for all admissible uncertainties, nonlinearities and time delays, the dynamics of the filtering error is guaranteed to be robustly asymptotically stable in the mean square, while achieving the prescribed H∞ disturbance rejection attenuation level. By using the Lyapunov stability theory and Itô’s differential rule, sufficient conditions are first established to ensure the existence of the desired filters, which are expressed in the form of a linear matrix inequality (LMI). Then, the explicit expression of the desired filter gains is also characterized. Finally, a numerical example is exploited to show the usefulness of the results derived.This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Tongwen Chen under the direction of Editor Ian Petersen. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, an International Joint Project sponsored by the Royal Society of the UK and the NSFC of China, the Alexander von Humboldt Foundation of Germany, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the Natural Science Foundation of Jiangsu Education Committee of China under Grant 06KJD110206, the National Natural Science Foundation of China under Grants 60774073 and 10671172, and the Scientific Innovation Fund of Yangzhou University of China under Grant 2006CXJ002

    Robust H∞ control for a class of nonlinear discrete time-delay stochastic systems with missing measurements

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the problem of robust H∞ output feedback control for a class of uncertain discrete-time delayed nonlinear stochastic systems with missing measurements. The parameter uncertainties enter into all the system matrices, the time-varying delay is unknown with given low and upper bounds, the nonlinearities satisfy the sector conditions, and the missing measurements are described by a binary switching sequence that obeys a conditional probability distribution. The problem addressed is the design of an output feedback controller such that, for all admissible uncertainties, the resulting closed-loop system is exponentially stable in the mean square for the zero disturbance input and also achieves a prescribed H∞ performance level. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are first derived to guarantee the existence of the desired controllers, and then the controller parameters are characterized in terms of linear matrix inequalities (LMIs). A numerical example is exploited to show the usefulness of the results obtained.This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Dragan Nešic under the direction of Editor Hassan K. Khalil. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the City University of Hong Kong under Grant 7001992, the Royal Society of the U.K. under an International Joint Project, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany
    corecore