research

A note on control of a class of discrete-time stochastic systems with distributed delays and nonlinear disturbances

Abstract

The official published version of this article can be found at the link below.This paper is concerned with the state feedback control problem for a class of discrete-time stochastic systems involving sector nonlinearities and mixed time-delays. The mixed time-delays comprise both discrete and distributed delays, and the sector nonlinearities appear in the system states and all delayed states. The distributed time-delays in the discrete-time domain are first defined and then a special matrix inequality is developed to handle the distributed time-delays within an algebraic framework. An effective linear matrix inequality (LMI) approach is proposed to design the state feedback controllers such that, for all admissible nonlinearities and time-delays, the overall closed-loop system is asymptotically stable in the mean square sense. Sufficient conditions are established for the nonlinear stochastic time-delay systems to be asymptotically stable in the mean square sense, and then the explicit expression of the desired controller gains is derived. A numerical example is provided to show the usefulness and effectiveness of the proposed design method.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60774073 and 60974030, the National 973 Program of China under Grant 2009CB320600, and the Alexander von Humboldt Foundation of Germany

    Similar works