185 research outputs found

    Proteomic analysis of protein deposits on worn daily wear silicone hydrogel contact lenses

    Get PDF
    Purpose: Previous studies have demonstrated deposition of tear proteins onto worn contact lenses. In this study, we used proteomic techniques to analyze the protein deposits extracted from worn daily wear silicone hydrogel contact lenses in combination with different lens care solutions. Methods: Worn lenses were collected and protein deposits extracted using urea and surfactant. Protein extracts were desalted, concentrated, and then separated using one-dimensional gel electrophoresis. Individual protein components in extracts were identified using liquid chromatography combined with tandem mass spectrometry (LC-MS-MS) after trypsin digestion. Results: One-dimensional gel electrophoresis revealed that lysozyme and other small proteins (around 20 kDa) were the most abundant proteins in the extracts. LC-MS-MS revealed a wide array of proteins in lens extracts with lysozyme and lipocalin 1 being the most commonly identified in deposit extracts. Conclusions: Worn contact lenses deposit a wide array of proteins from tear film and other sources. Protein deposit profiles varied and were specific for each contact lens material.9 page(s

    The complete chloroplast genome of common walnut (Juglans regia)

    Get PDF
    Common walnut (Juglans regia L.) is cultivated in temperate regions worldwide for its wood and nuts. The complete chloroplast genome of J. regia was sequenced using the Illumina MiSeq platform. This is the first complete chloroplast sequence for the Juglandaceae, a family that includes numerous species of economic importance. The chloroplast genome of J. regia was 160 367 bp in length, with 36.11% GC content. It contains a pair of inverted repeats (26 035 bp) which were separated by a large single copy (89 872 bp) and a small single copy region (18 425 bp). A total of 137 genes were annotated, which included 86 protein-coding genes, three pseudogenes (two ycf15 and one infA), 40 tRNA genes and eight rRNA genes. The neighbour-joining phylogenetic analysis with the reported chloroplast genomes showed that common walnut chloroplasts are most closely related to those of the Fagaceae family

    Protein Kinase G-I Deficiency Induces Pulmonary Hypertension through Rho A/Rho Kinase Activation

    Get PDF
    Protein kinase G (PKG) plays an important role in the regulation of vascular smooth cell contractility and is a critical mediator of nitric oxide signaling, which regulates cardiovascular homeostasis. PKG-I–knockout (Prkg1−/−) mice exhibit impaired nitric oxide/cGMP-dependent vasorelaxation and systemic hypertension. However, it remains unknown whether PKG-I deficiency induces pulmonary hypertension. In this study, we characterized the hypertensive pulmonary phenotypes in Prkg1−/− mice and delineated the underlying molecular basis. We observed a significant increase in right ventricular systolic pressure in Prkg1−/− mice in the absence of systemic hypertension and left-sided heart dysfunction. In addition, we observed marked muscularization of distal pulmonary vessels in Prkg1−/− mice. Microangiography revealed impaired integrity of the pulmonary vasculature in Prkg1−/− mice. Mechanistically, PKG-I–mediated phosphorylation of Rho A Ser188 was markedly decreased, and the resultant Rho A activation was significantly increased in Prkg1−/− lung tissues, which resulted in Rho kinase activation. The i.t. administration of fasudil, a Rho kinase inhibitor, reversed the hypertensive pulmonary phenotype in Prkg1−/− mice. Taken together, these data show that PKG-I deficiency induces pulmonary hypertension through Rho A/Rho kinase activation–mediated vasoconstriction and pulmonary vascular remodeling

    Experimental evaluation of a Chinese sulfur-containing lean iron ore as the oxygen carrier for chemical-looping combustion

    Get PDF
    A series of chemical-looping combustion (CLC) tests were conducted in a thermogravimetric analysis (TGA) reactor to investigate the potential of a Chinese sulfur-containing lean iron ore as the oxygen carrier. Two main products of solidfuel pyrolysis and gasification, namely, CH4 and CO, were selected as the reducing gases. Consecutive reduction−oxidation cycles were first carried out in the TGA reactor to evaluate the cyclic stability and agglomeration tendency of the oxygen carrier. The effects of the temperature, fuel gas concentration, and reaction gas composition on the reduction reaction were further investigated. Increasing the reaction temperature or fuel gas concentration enhanced the reduction rate and reaction degree of the oxygen carrier. Meanwhile, CO showed much higher reduction reactivity than CH4. A comparison of the rate index of the iron ore used with those of high-grade minerals indicated that the iron ore had adequate reactivity for its application in solid-fuel CLC technology. The side reaction of carbon deposition was also discussed. Finally, the shrinking-core model with chemical reaction control was adopted to determine the chemical kinetics

    Magnetic ground state of FeSe

    Full text link
    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit N\'eel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts = 90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here, we report inelastic neutron-scattering experiments that reveal both stripe and N\'eel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the N\'eel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ~ 60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S = 1 nematic quantum-disordered paramagnet interpolating between the N\'eel and stripe magnetic instabilities.Comment: Supplementary information included; accepted by Nature Communication

    Strong Interplay between Stripe Spin Fluctuations, Nematicity and Superconductivity in FeSe

    Full text link
    Elucidating the microscopic origin of nematic order in iron-based superconducting materials is important because the interactions that drive nematic order may also mediate the Cooper pairing. Nematic order breaks fourfold rotational symmetry in the iron plane, which is believed to be driven by either orbital or spin degrees of freedom. However, as the nematic phase often develops at a temperature just above or coincides with a stripe magnetic phase transition, experimentally determining the dominant driving force of nematic order is difficult. Here, we use neutron scattering to study structurally the simplest iron-based superconductor FeSe, which displays a nematic (orthorhombic) phase transition at Ts=90T_s=90 K, but does not order antiferromagnetically. Our data reveal substantial stripe spin fluctuations, which are coupled with orthorhombicity and are enhanced abruptly on cooling to below TsT_s. Moreover, a sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron boson coupling mode revealed by scanning tunneling spectroscopy, thereby suggesting a spin fluctuation-mediated sign-changing pairing symmetry. By normalizing the dynamic susceptibility into absolute units, we show that the magnetic spectral weight in FeSe is comparable to that of the iron arsenides. Our findings support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.Comment: 19 pages, 8 figure

    Gold-Catalyzed Stereoselective Domino Cyclization/Alkynylation of N-Propargylcarboxamides with Benziodoxole Reagents for the Synthesis of Alkynyloxazolines

    Get PDF
    A concise and highly stereoselective synthesis of alkynyloxazolines via a gold-catalyzed domino cyclization-alkynylation cascade of N-propargylcarboxamides with benziodoxole reagents is reported. This new protocol, which represents an attractive alternative to two step sequences based on Sonagashira couplings, offers a broad substrate scope, excellent functional group tolerance, and perfect stereoselectivity. A comparison of the computed energies of the isomers of the product suggests kinetic control as the cause of the observed selectivity

    Cobalt‐Exchanged Poly(Heptazine Imides) as Transition Metal–Nx Electrocatalysts for the Oxygen Evolution Reaction

    Get PDF
    Poly(heptazine imides) hosting cobalt ions as countercations are presented as promising electrocatalysts for the oxygen evolution reaction (OER). A facile mixed‐salt melt‐assisted condensation is developed to prepare such cobalt poly(heptazine imides) (PHI‐Co). The Co ions can be introduced in well‐controlled amounts using this method, and are shown to be atomically dispersed within the imide‐linked heptazine matrix. When applied to electrocatalytic OER, PHI‐Co shows a remarkable activity with an overpotential of 324 mV and Tafel slope of 44 mV dec−1 in 1 m KOH.DFG, 390540038, EXC 2008: UniSysCatTU Berlin, Open-Access-Mittel - 202
    corecore