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Abstract: A concise and highly stereoselective synthesis of alkynyloxazolines via a gold-catalyzed domino
cyclization-alkynylation cascade of N-propargylcarboxamides with benziodoxole reagents is reported. This
new protocol, which represents an attractive alternative to two step sequences based on Sonagashira couplings,
offers a broad substrate scope, excellent functional group tolerance, and perfect stereoselectivity. A comparison
of the computed energies of the isomers of the product suggests kinetic control as the cause of the observed
selectivity.
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Introduction

Oxazolines are important heterocycles ubiquitous in
bioactive natural products and pharmaceuticals.[1] In
addition, they also function as useful synthetic
intermediates,[2] protecting groups,[3] as well as valua-
ble ligands[4] in synthetic and catalytic chemistry.
Therefore, effective ways to synthesize and function-
alize oxazolines are highly desirable. Traditional
methods for accessing these heterocycles start from
carboxylic acids, esters, nitriles, hydroxyamides, alde-
hydes and olefins.[1c] Another versatile and effective
way is the transition metal-catalyzed cyclization of N-
propargylcarboxamides,[5] with Brønsted acids,[6] or
under strong basic conditions.[7] Among these N,O-
heterocycles, alkynyl-substituted oxazolines represent
a highly interesting class of functionalized building
blocks for synthetic chemistry, a fruitful follow-up
chemistry is enabled by the subsequent functionaliza-
tion of the alkynyl groups.[8] Traditionally, these
compounds are synthesized by Sonogashira cross
coupling reactions.[9] But this transformation is based

on the availability of the corresponding halogenated
oxazolines, which are usually accessed through the
cyclization-halogenation reaction of propargylamides
(Scheme 1a).[10] This two-step strategy requires iso-
lation and purification of the sensitive[5h] halogenated
oxazoline intermediates, which inevitably consumes
additional time, labour, and resources. In addition, this
method cannot provide access to products bearing
reactive halogen substituents like bromides or iodides
for further subsequent functionalization, as these also
will react under the palladium-catalyzed conditions of
the Sonogashira coupling. Hence, a cyclization/alkyny-
lation process that can be carried out in a domino
procedure would be advantageous to the existing
strategies.

Alkynyl-substituted hypervalent iodine compounds
are powerful reagents for the formation of new C-
alkynyl bonds by electrophilic alkynylation
reactions.[11] In 2009, Waser and co-workers reported
the first direct C� H alkynylation of pyrroles and
indoles by using [(triisopropylsilyl)ethynyl]benzio-
doxolone (TIPS-EBX (4a)) in combination with AuCl
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as catalyst.[12] Since then, the use of TIPS-EBX for a
direct ethynyl transfer reactions has been extensively
exploited.[11a,b] For instance, a Pd-catalyzed cyclization-
alkynylation cascade of olefins with TIPS-EBX re-
ported by Waser et al. lead to oxyalkynylation products
of alkenes.[13] Patil’s group has addressed a gold-
catalyzed aminoalkynylation of alkynes by using
TIPS-EBX to access alkynylated quinalizinones.[14] In
2013, a modified ethynylbenziodoxole reagent (TIPS-
EBX* (4b)) was developed by Waser et al., this
reagent was exceptionally efficient for a domino
cyclization-alkynylation process of allenyl ketones to
access C3-alkynylated furans.[15] In addition, it also
acted effectivly in the gold-catalyzed C(sp)� C(sp)
cross-coupling reaction of terminal alkynes with
alkynyl-substituted hypervalent iodine reagents for the
synthesis of unsymmetrical 1,3-diynes.[16] Inspired by
this, we envisaged a domino process (Scheme 1b) on
the basis of our previous studies on the gold-catalyzed
cyclization of propargylamides (Scheme 2)[5g] and one-
pot strategies based on this reactivity.[17]

Results and Discussion
First we used propargylamide 1a as the test substrate
with EBX* derivative 4b in the presence of AuCl

(10 mol%) in Et2O. To our disappointment, only trace
amounts of the desired product could be detected by
1H NMR, together with a large amount of oxazole 7a.
This is in line with our previous work, which showed
that in the presence of AuIII, the oxazolines 3 readily
aromatize to oxazoles 7.[5c] This seems to be initiated
by the oxidation of AuI to AuIII in the presence of 4b.
To prevent this isomerisation, compounds 1 with
tertiary propargylic substituents were used for the
subsequent conversions.

Thus N-propargylamide 1b and TIPS-EBX* 4b
were used as the model substrates to optimize the
reaction conditions (Table 1). Preliminary results
showed the desired transformation, 9% of the product
3b were detected (10 mol% AuCl, Et2O, RT; entry 1),
but this would be stoichiometric in gold. Other gold
catalysts with ligands like IPrAuCl or PPh3AuCl did
not afford 3b (entry 2 and 3). Changing the solvent to
THF gave a positive result, affording 3b in 23% yield
(entry 4). Other screened solvents, DCM, CH3CN, and
iPrOH, generated 3b in much lower yields (entry 5–7).
By decreasing the reaction temperature to 0 °C, the
yield increased to 36% (entry 9), while at 50 °C and
� 20 °C the coupling was less efficient (entry 8 and
10). Adding 0.5 equiv. of AcOH again improved the
reaction, yielding 48% of 3b (entry 11). The yield
could be further increased to 67% by raising the
amount of AuCl to 15 mol% (entry 12). Among the
screened amounts of AcOH, 0.2, 0.8, and 1.0 equiv.
were less efficient, affording 3b in lower yields
(entry 13–15). Changing the additive to Zn(OTf)2, Yb
(OTf)3, Sc(OTf)2, NaOAc, or Na2CO3, and 2-picolinic
acid significantly decreased the yield (entry 16–21).
Another EBX derivative (4a) did also afford 3b, but in

Scheme 1. Previous synthesis of alkynyl-substituted alkylidenoxazolines and gold-catalyzed domino cyclization/alkynylation
process.

Scheme 2. Gold-catalyzed cyclization of propargylamides.
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much lower yield (entry 22). Control experiments
without catalyst showed no reaction (entry 23).

Under the optimized conditions (1.2 equiv. of
ethynylbenziodoxole 4b, 15 mol% AuCl, 0.5 equiv. of
AcOH, THF, 0 °C), the scope with respect to the N-
propargylcarboxamides 1 was then investigated (Ta-
ble 2). Awide range of substituents at the phenyl group
were compatible, giving the desired products in good
to moderate yields (3b–q). With regard to methyl-
substituted amides, substituents at m- and p-positions
of the phenyl group gave the corresponding products
in much higher yields (3d, 3e) than o-aryl-substituted
amide (3c), probably due to the steric hindrance.
Amides bearing methoxyl groups at the aromatic rings,
no matter at o-, m, or p-positions produced products
3f–h in moderate yields, while a two-fold methoxy-
substituted amide afforded 3 i in 32% yield. Impor-
tantly, substrates with electron-withdrawing groups

including fluoride (3 j), chloride (3k, 3 l), bromide
(3m), iodide (3n), trifluoromethyl (3o), ester (3p),
and nitro functionalities (3q) all turned out to be
tolerated and afforded the corresponding products in
45–59% yields, which opens the door for downstream
manipulation at such positions. Besides phenyl amides,
a naphthyl amide also gave product 3r in fair yield
(31%). When the phenyl group was changed to hetero-
cycles including pyridine (3s), furan (3t) and
thiophene (3u), the yields remained good to moderate
(31–62%). In addition to aromatic amides, an aliphatic
amide also afforded product 3v in 45% yield. The
phenyl amide bearing a cyclohexyl group instead of a
dimethyl group gave product 3w in moderate yield
(50%). Finally, an internal phenyl amide was inves-
tigated to give 3x in 26% yield.

Next, the utility of various EBX* analogues for the
gold-catalyzed domino cyclization-alkynylation reac-

Table 1. Optimization of the reaction conditions.[a]

Entry Catalyst Solvent T [°C] Additive Yield (%)[b]

1 AuCl Et2O RT – 9
2 IPrAuCl Et2O RT – ND
3 PPh3AuCl Et2O RT – ND
4 AuCl THF RT – 23
5 AuCl DCM RT – 8
6 AuCl CH3CN RT – 8
7 AuCl iPrOH RT – trace
8 AuCl THF 50 – 10
9 AuCl THF 0 – 36
10 AuCl THF � 20 – 4
11 AuCl THF 0 AcOH (0.5 eq.) 48
12 AuCl THF 0 AcOH (0.5 eq.) 67(64)[c]
13 AuCl THF 0 AcOH (0.2 eq.) 46
14 AuCl THF 0 AcOH (0.8 eq.) 61
15 AuCl THF 0 AcOH (1.0 eq.) 54
16 AuCl THF 0 Zn(OTf)2 (0.15 eq.) 10
17 AuCl THF 0 Yb(OTf)3 (0.15 eq.) 48
18 AuCl THF 0 Sc(OTf)2 (0.15 eq.) 26
19 AuCl THF 0 NaOAc (1.0 eq.) trace
20 AuCl THF 0 Na2CO3 (1.0 eq.) trace
21 AuCl THF 0 2-Picolinic acid

(1.0 eq.)
20

22 AuCl THF 0 AcOH (0.5 eq.) 20[d]
23 None THF 0 AcOH (0.5 eq.) ND[e]

[a] Reaction conditions: entries 1–11, 1b (0.1 mmol), 4b (0.12 mmol), catalyst (10 mol%), and additive in 2 mL of solvent;
entries 12–21, 1b (0.1 mmol), 4b (0.12 mmol), catalyst (15 mol%), and additive in 2 mL of solvent.

[b] Measured by 1H NMR with dibromomethane as the internal standard.
[c] Yield of isolated product.
[d] Reaction conditions: 1b (0.1 mmol), 4a (0.12 mmol), catalyst (15 mol%), and additive reacted in 2 mL of solvent.
[e] Reaction conditions: 1b (0.1 mmol), 4b (0.12 mmol), and additive reacted in 2 mL of solvent.
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tion was investigated with 1b as the reaction partner
(Table 3). As shown in Table 3, tBuMe2Si-EBX* (4c),
tBuPh2Si-EBX* (4d), and Ph-EBX* (4e) all worked
with the reaction, affording products 3y, 3z, and 3aa
in 34%, 36%, and 37% yields, respectively.

In order to gain insight into the reaction mecha-
nism, we performed the experiment with compound
3ab under the standard conditions (Scheme 3). After
stirring at 0 °C for 5 h, still no conversion was
observed. This result proves that the gold-catalyzed
domino cyclization/alkynylation reaction does not

Table 2. Scope with regard to the N-propargylcarboxamides.
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proceed via 3ab as intermediate, followed by the direct
sp2-C� H alkynylation. We also performed a deuterium
labeling experiment with deuterated alkyne 1b-d (H:
D=4:96) under the standard conditions (Scheme 4).
Based on the corresponding 1H NMR spectroscopic

data, this reaction afforded product 3b-d with a ratio
of H:D of 4:96 at the vinylic position.

From the above experiments and the conclusions
from previous reports,[5g,18] a plausible mechanism[19]

for the gold-catalyzed domino cyclization/alkynylation
reaction is described in Scheme 5. Initially, the
carbonyl oxygen atom stereoselectively attacks alkyne,
which is π-coordinated to gold, from the backside in an
5-exo-dig fashion to form vinyl-gold intermediate B.
After that, the oxidative addition of intermediate B
(which due to the negatively charged chloride ligand
on gold is a locally negatively charged ate-complex of
gold(I), and thus easier to oxidize) and compound 4b
affords intermediate C,[20] which then undergoes ligand
exchange and reductive elimination to give the active
gold(I) catalyst and the final product 3b, which is
obtained in 100% trans-configuration, which is based
on the trans-selective formation of the vinylgold
intermediate. In addition, the increased yield of
product 3b upon the addition of 0.5 equiv. of acetic
acid (Table 1, entry 11) is probably due to the
protonation of the alkoxid in complex C which assists
the formation of 8, thus accelerating the catalytic cycle
and the formation of the desired product.

In order to analyze the relative thermodynamic
stability of the two diastereomeric products (E)-3b and

Table 3. Scope with regard to the ethynylbenziodoxoles.

Scheme 3. Reaction of 3ab under standard conditions.

Scheme 4. Deuterium labeling experiments.

Scheme 5. Plausible mechanism for the gold-catalyzed domino
cyclization-alkynylation reaction.
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(Z)-3b, we conducted a computational study. A
DFT� D3 analysis (B3LYP-D3(BJ)/6-31G*, CPCM=
8.93)[21] shows that the (E)-isomer is thermodynami-
cally favoured by a small margin of ΔG= � 1.2 kJ/mol
(Zero-point corrected energy difference: ΔE0=
� 2.6 kJ/mol, enthalpy difference: ΔH= � 2.8 kJ/mol).
As Figure 1 shows, due to the slim alkynyl subunit the

tertiary carbon with the gem-dimethyl substitution and
the C� C triple bond do not show a strong steric
repulsion (Figure 1, left), and thus the energy of the
(E)-isomer is not increased by such an steric inter-
action. Taking into account the error margin of the
calculations, both structures essentially have almost the
same energies, and the experimentally observed
selectivity cannot result from thermodynamic control
but has to be based on kinetic control.

Finally, we succeeded in growing single crystals of
the desilylated derivative 3q’. An single crystal X-ray
crystal structure analysis of 3q’[22] fully confirmed the
(E)-geometry of the product and thus is in full accord
with the mechanistic proposal (Figure 2).

Conclusion
In conclusion, we have developed a novel, concise,
efficient, and highly stereoselective synthesis of
alkynyloxazolines by the gold-catalyzed domino cycli-
zation/alkynylation of propargylamides with benzio-
doxole reagents. Simple and mild conditions, broad

substrate scope, excellent functional group tolerance,
and 100% diastereoselectivity make this new strategy
attractive and practical for synthetic chemistry in order
to access interesting building blocks.

Experimental Section
General Procedure for the Gold-Catalyzed Stereo-
selective Domino Cyclization/Alkynylation of N-
Propargylcarboxamides with Benziodoxole Re-
agents
A round bottom flask equipped with a magnetic stir bar was
charged with AuCl (15.0 μmol, 3.49 mg, 0.15 equiv.), AcOH
(2.86 μL, 0.5 equiv.), N-propargylcarboxamides 1 (0.10 mmol,
1.0 equiv.), alkynyl hypervalent iodine reagents 4b (0.12 mmol,
1.2 equiv.), and THF (2 mL). The mixture was then stirred at
0 °C for 5 h. After reaction, the mixture was extracted with ethyl
acetate and concentrated, and the residue was purified by
chromatography on silica gel (eluent: PE/EA, or n-hexane/
acetone) to give the desired product 3.

3b: (E)-4,4-Dimethyl-2-Phenyl-
5-(3-(Triisopropylsilyl)Prop-2-Ynylidene)-
4,5-Dihydrooxazole
According to GP, 18.7 mg (100 μmol) of 1b, 66.1 mg
(120 μmol) of 4b, 3.49 mg (15.0 μmol) of AuCl, and 2.86 μL
(50.0 μmol) of AcOH gave 23.5 mg (64.0 μmol) of 3b (yield=

64%).

Colorless oil; 1H NMR (500 MHz, CDCl3) δ 7.97 (d, 2H, J=

7.5 Hz), 7.53–7.50 (m, 1H), 7.45–7.42 (m, 2H), 5.48 (s, 1H),
1.71 (s, 6H), 1.11 (s, 21H); 13 C NMR (125 MHz, CDCl3) δ
172.69 (s), 159.12 (s), 131.91 (d), 128.54 (d, 2 C), 128.16 (d,
2 C), 126.36 (s), 100.83 (s), 95.89 (s), 82.50 (d), 71.13 (s),
26.01 (q, 2 C), 18.67 (q, 6 C), 11.49 (s, 3 C); IR (ATR): v˜
3062, 2942, 2892, 2865, 2132, 1783, 1672, 1651, 1581, 1462,
1384, 1360, 1319, 1292, 1260, 1181, 1121, 1099, 1046, 1022,
964, 916, 883, 811, 694, 667, 624 cm-1; HRMS (EI) calcd for
[C23H34NOSi]+ (M + H)+: 368.2404; found 368.2406.
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Figure 2. Solid state molecular structure of 3q’.
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