424 research outputs found
Nucleon-nucleon momentum correlation function for light nuclei
Nucleon-nucleon momentum correlation function have been presented for nuclear
reactions with neutron-rich or proton-rich projectiles using a nuclear
transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model.
The relationship between the binding energy of projectiles and the strength of
proton-neutron correlation function at small relative momentum has been
explored, while proton-proton correlation function shows its sensitivity to the
proton density distribution. Those results show that nucleon-nucleon
correlation function is useful to reflect some features of the neutron- or
proton-halo nuclei and therefore provide a potential tool for the studies of
radioactive beam physics.Comment: Talk given at the 18th International IUPAP Conference on Few-Body
Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To appear in
Nucl. Phys.
Neutron/proton ratio of nucleon emissions as a probe of neutron skin
The dependence between neutron-to-proton yield ratio () and neutron
skin thickness () in neutron-rich projectile induced reactions is
investigated within the framework of the Isospin-Dependent Quantum Molecular
Dynamics (IQMD) model. The density distribution of the Droplet model is
embedded in the initialization of the neutron and proton densities in the
present IQMD model. By adjusting the diffuseness parameter of neutron density
in the Droplet model for the projectile, the relationship between the neutron
skin thickness and the corresponding in the collisions is obtained.
The results show strong linear correlation between and
for neutron-rich Ca and Ni isotopes. It is suggested that may be used
as an experimental observable to extract for neutron-rich nuclei,
which is very significant to the study of the nuclear structure of exotic
nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.
Scaling of Anisotropic Flow and Momentum-Space Densities for Light Particles in Intermediate Energy Heavy Ion Collisions
Anisotropic flows ( and ) of light nuclear clusters are studied by
Isospin-Dependent Quantum Molecular Dynamics model for the system of Kr
+ Sn at intermediate energy and large impact parameters.
Number-of-nucleon scaling of the elliptic flow () are demonstrated for the
light fragments up to = 4, and the ratio of shows a constant
value of 1/2. In addition, the momentum-space densities of different clusters
are also surveyed as functions of transverse momentum, in-plane transverse
momentum and azimuth angle relative to the reaction plane. The results can be
essentially described by momentum-space power law. All the above phenomena
indicate that there exists a number-of-nucleon scaling for both anisotropic
flow and momentum-space densities for light clusters, which can be understood
by the coalescence mechanism in nucleonic degree of freedom for the cluster
formation.Comment: 8 pages, 3 figures; to be published in Physics Letters
Scaling of anisotropy flows in intermediate energy heavy ion collisions
Anisotropic flows (, and ) of light nuclear clusters are
studied by a nucleonic transport model in intermediate energy heavy ion
collisions. The number-of-nucleon scalings of the directed flow () and
elliptic flow () are demonstrated for light nuclear clusters. Moreover,
the ratios of of nuclear clusters show a constant value of 1/2
regardless of the transverse momentum. The above phenomena can be understood by
the coalescence mechanism in nucleonic level and are worthy to be explored in
experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus
Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the
proceeding issue in Nuclear Physics
System-size scan of dihadron azimuthal correlations in ultra-relativistic heavy ion collisions
System-size dependence of dihadron azimuthal correlations in
ultra-relativistic heavy ion collision is simulated by a multi-phase transport
model. The structure of correlation functions and yields of associated
particles show clear participant path-length dependences in collision systems
with a partonic phase. The splitting parameter and root-mean-square width of
away-side correlation functions increase with collision system size from
N+N to Au+Au collisions. The double-peak
structure of away-side correlation functions can only be formed in sufficient
"large" collision systems under partonic phase. The contrast between the
results with partonic phase and with hadron gas could suggest some hints to
study onset of deconfinment.Comment: 8 pages, 4 figures, 1 table; Nucl. Phys. A (accepted
Three-Particle Correlations from Parton Cascades in Au+Au Collisions
We present a study of three-particle correlations among a trigger particle
and two associated particles in Au + Au collisions at = 200 GeV
using a multi-phase transport model (AMPT) with both partonic and hadronic
interactions. We found that three-particle correlation densities in different
angular directions with respect to the triggered particle (`center', `cone',
`deflected', `near' and `near-away') increase with the number of participants.
The ratio of `deflected' to `cone' density approaches to 1.0 with the
increasing of number of participants, which indicates that partonic Mach-like
shock waves can be produced by strong parton cascades in central Au+Au
collisions.Comment: 9 pages, 6 figures; Final version to appear in Physics Letters
Azimuthal asymmetry of direct photons in intermediate energy heavy-ion collisions
Hard photon emitted from energetic heavy ion collisions is of very
interesting since it does not experience the late-stage nuclear interaction,
therefore it is useful to explore the early-stage information of matter phase.
In this work, we have presented a first calculation of azimuthal asymmetry,
characterized by directed transverse flow parameter and elliptic asymmetry
coefficient , for proton-neutron bremsstrahlung hard photons in
intermediate energy heavy-ion collisions. The positive and negative
of direct photons are illustrated and they seem to be anti-correlated to the
corresponding free proton's flow.Comment: 7 pages, 4 figures; accepted by Physics Letters
Neutrino Clustering in the Galaxy with a Global Monopole
In spherically symmetric, static spacetime, we show that only j=1/2 fermions
can satisfy both Einstein's field equation and Dirac's equation. It is also
shown that neutrinos are able to have effective masses and cluster in the
galactic halo when they are coupled to a global monopole situated at the
galactic core. Astronomical implications of the results are discussed.Comment: 8 pages, Revtex
Di-hadron azimuthal correlation and Mach-like cone structure in parton/hadron transport model
In the framework of a multi-phase transport model (AMPT) with both partonic
and hadronic interactions, azimuthal correlations between trigger particles and
associated scattering particles have been studied by the mixing-event
technique. The momentum ranges of these particles are
GeV/ and GeV/ (soft), or 4
GeV/ and GeV/ (hard) in Au + Au collisions at
= 200 GeV. A Mach-like structure has been observed in
correlation functions for central collisions. By comparing scenarios with and
without parton cascade and hadronic rescattering, we show that both partonic
and hadronic dynamical mechanisms contribute to the Mach-like structure of the
associated particle azimuthal correlations. The contribution of hadronic
dynamical process can not be ignored in the emergence of Mach-like correlations
of the soft scattered associated hadrons. However, hadronic rescattering alone
cannot reproduce experimental amplitude of Mach-like cone on away-side, and the
parton cascade process is essential to describe experimental amplitude of
Mach-like cone on away-side. In addition, both the associated multiplicity and
the sum of decrease, whileas the increases, with the impact
parameter in the AMPT model including partonic dynamics from string melting
scenario.Comment: 9 pages, 5 figures; Physics Letters B 641, 362-367 (2006
Isospin influences on particle emission and critical phenomenon in nuclear dissociation
Features of particle emission and critical point behavior are investigated as
functions of the isospin of disassembling sources and temperature at a moderate
freeze-out density for medium-size Xe isotopes in the framework of isospin
dependent lattice gas model. Multiplicities of emitted light particles,
isotopic and isobaric ratios of light particles show the strong dependence on
the isospin of the dissociation source, but double ratios of light isotope
pairs and the critical temperature determined by the extreme values of some
critical observables are insensitive to the isospin of the systems. Values of
the power law parameter of cluster mass distribution, mean multiplicity of
intermediate mass fragments (), information entropy () and Campi's
second moment () also show a minor dependence on the isospin of Xe
isotopes at the critical point. In addition, the slopes of the average
multiplicites of the neutrons (), protons (), charged particles
(), and IMFs (), slopes of the largest fragment mass number
(), and the excitation energy per nucleon of the disassembling source
() to temperature are investigated as well as variances of the
distributions of , , , , and . It
is found that they can be taken as additional judgements to the critical
phenomena.Comment: 9 Pages, 8 figure
- âŠ