283 research outputs found

    Characteristics and Sensing Properties of the La1-xNdxCo0.3Fe0.7O3 System for CO Gas Sensors

    Get PDF
    A series of nanostructured La1-xNdxCo0.3Fe0.7O3 perovskite-type (x ranging from 0 to 1) were prepared using the co-precipitation method. CO gas sensing properties of La1-xNdxCo0.3Fe0.7O3 sensors were performed. La0.7Nd0.3Co0.3Fe0.7O3 sensor showed the highest response at 250 °C (S=52.8)

    Effect of cytokinins on shoot regeneration from cotyledon and leaf segment of stem mustard (Brassica juncea var. tsatsai)

    Get PDF
    Cotyledon and leaf segments of stem mustard (Brassica juncea var. tsatsai) were cultured on Murashige and Skoog medium supplemented with various concentrations of different cytokinins [6-benzyladenine (BA), N-(2-chloro-4-pyridyl)-n-phenylurea (CPPU), 6-furfurylaminopurine (KT) and thidiazuron (TDZ)] in combinations with different levels of ¿-naphthalene acetic acid (NAA). The shoot regeneration frequency of cotyledon and leaf segment was dependent on the kinds and concentrations of cytokinins used in the medium, while in most cases cotyledon gave high regeneration frequency than leaf segment. TDZ proved to be the best cytokinin to induce shoot from both cotyledon and leaf segments compared to BA, KT and CPPU. The highest frequency of shoot regeneration was 61.3¿67.9 % in cotyledon and 40.7¿52.4% in leaf segment respectively when 2.27 or 4.54 ¿M TDZ was combined with 5.37 ¿M NAA. Next to TDZ, CPPU was also very suitable to induce shoot formation both in cotyledon and leaf segment. When 1.61 ¿M CPPU was combined with 2.69 ¿M NAA, shoot regeneration frequency was 45.0% in cotyledon and 36.4% in leaf segment, respectively. It was also shown that KT and BA affected shoot regeneration from cotyledon and leaf segment, the shoot regeneration was greatly increased when NAA was added together with cytokinins. The efficient and reliable shoot regeneration system was developed in both cotyledon and leaf segments. This regeneration protocol may be applicable to the improvement of this crop by genetic engineering in the futur

    A study on simulation analysis for laser-welded I-core sandwich plate with different material properties and T-joint weld characteristic

    Get PDF
    Stiffness and strength of sandwich plate vary depending on similar (SI) or dissimilar (DSI) material element (faceplate or core) and laser weld geometry. The issues of I-core sandwich plate characteristics are essential to attain practical sandwich plate application. Hence, research on different material properties and T-joint weld characteristics of I-core sandwich steel plate presents a positive understanding of various character factors that affect sandwich plate bending performance. In this paper, the I-core sandwich steel plate characteristic was investigated using finite element analysis (FEA). The 3-point bending with a fine meshing, interaction of elements, and load applied was kept constant. The partition size at the laser weld geometry is smaller, and the partition size continuously grows when further away from the weld geometry. The result shows that a combination of weak and strong material on either element will reduce I-core sandwich's stiffness and strength unless strong material is assigned at the faceplate and core. Moreover, there is a significant change when rootgap is present. This influencing the centric and eccentric of the weld. The weld width produces a perfect bending as wholesome T-joint, yet to achieve such traits is impossible in reality but possible when the weld length is closer to the length of the core. The exploration of these characteristics in response to I-core sandwich steel plate holds a good response in engaging for the multiple variables that affect the plate's stiffness and strength

    Entangled state preparation via dissipation-assisted adiabatic passages

    Full text link
    The main obstacle for coherent control of open quantum systems is decoherence due to different dissipation channels and the inability to precisely control experimental parameters. To overcome these problems we propose to use dissipation-assisted adiabatic passages. These are relatively fast processes where the presence of spontaneous decay rates corrects for errors due to non-adiabaticity while the system remains in a decoherence-free state and behaves as predicted for an adiabatic passage. As a concrete example we present a scheme to entangle atoms by moving them in and out of an optical cavity.Comment: 11 pages, 7 figures, minor changes, accepted for publication in Phys. Rev.

    Non-Markovian dynamics in a spin star system: The failure of thermalization

    Full text link
    In most cases, a small system weakly interacting with a thermal bath will finally reach the thermal state with the temperature of the bath. We show that this intuitive picture is not always true by a spin star model where non-Markov effect predominates in the whole dynamical process. The spin star system consists a central spin homogeneously interacting with an ensemble of identical noninteracting spins. We find that the correlation time of the bath is infinite, which implies that the bath has a perfect memory, and that the dynamical evolution of the central spin must be non- Markovian. A direct consequence is that the final state of the central spin is not the thermal state equilibrium with the bath, but a steady state which depends on its initial state.Comment: 8 page

    Colletotrichum species associated with anthracnose of Pyrus spp. in China

    Get PDF
    Colletotrichum species are plant pathogens, saprobes, and endophytes on a range of economically important hosts. However, the species occurring on pear remain largely unresolved. To determine the morphology, phylogeny and biology of Colletotrichum species associated with Pyrus plants, a total of 295 samples were collected from cultivated pear species (including P. pyrifolia, P. bretschneideri, and P. communis) from seven major pear-cultivation provinces in China. The pear leaves and fruits affected by anthracnose were sampled and subjected to fungus isolation, resulting in a total of 488 Colletotrichum isolates. Phylogenetic analyses based on six loci (ACT, TUB2, CAL, CHS-1, GAPDH, and ITS) coupled with morphology of 90 representative isolates revealed that they belong to 10 known Colletotrichum species, including C. aenigma, C. citricola, C. conoides, C. fioriniae, C. fructicola, C. gloeosporioides, C. karstii, C. plurivorum, C. siamense, C. wuxiense, and two novel species, described here as C. jinshuiense and C. pyrifoliae. Of these, C. fructicola was the most dominant, occurring on P. pyrifolia and P. bretschneideri in all surveyed provinces except in Shandong, where C. siamense was dominant. In contrast, only C. siamense and C. fioriniae were isolated from P. communis, with the former being dominant. In order to prove Koch's postulates, pathogenicity tests on pear leaves and fruits revealed a broad diversity in pathogenicity and aggressiveness among the species and isolates, of which C. citricola, C. jinshuiense, C. pyrifoliae, and C. conoides appeared to be organ-specific on either leaves or fruits. This study also represents the first reports of C. citricola, C. conoides, C. karstii, C. plurivorum, C. siamense, and C. wuxiense causing anthracnose on pear.Earmarked Fundhttps://www.ingentaconnect.com/content/nhn/pimjhj2020BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog

    The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array

    Get PDF
    We have already reported the first result on the all-particle spectrum around the knee region based on data from 2000 November to 2001 October observed by the Tibet-III air-shower array. In this paper, we present an updated result using data set collected in the period from 2000 November through 2004 October in a wide range over 3 decades between 101410^{14} eV and 101710^{17} eV, in which the position of the knee is clearly seen at around 4 PeV. The spectral index is -2.68 ±\pm 0.02(stat.) below 1PeV, while it is -3.12 ±\pm 0.01(stat.) above 4 PeV in the case of QGSJET+HD model, and various systematic errors are under study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
    corecore