Effect of cytokinins on shoot regeneration from cotyledon and leaf segment of stem mustard (Brassica juncea var. tsatsai)

De-Ping Guo ${ }^{1}$, Zhu-Jun Zhu ${ }^{1}$, Xiao-Xiang Hu ${ }^{1}$ \& Si-Jun Zheng ${ }^{1,2, *}$
${ }^{1}$ Department of Horticulture, Zhejiang University 310029, Hangzhou, P.R. China; ${ }^{2}$ Plant Research International, Wageningen University and Research Centre, P.O. Box 16, 6700AA, Wageningen, The Netherlands (*requests for offprints: Lab. of Entomology, Wageningen University, 6700 EH, The Netherlands; Phone: + 31317482328 ; Fax: + 31317484821 ; E-mail: sijun.zheng@wur.nl)

Received 24 November 2003; accepted in revised form 14 March 2005
Key words: Brassica juncea var. tsatsai, cytokinins, stem mustard, tissue culture

Abstract

Cotyledon and leaf segments of stem mustard (Brassica juncea var. tsatsai) were cultured on Murashige and Skoog medium supplemented with various concentrations of different cytokinins [6-benzyladenine (BA), N-(2-chloro-4-pyridyl)-n-phenylurea (CPPU), 6-furfurylaminopurine (KT) and thidiazuron (TDZ)] in combinations with different levels of α-naphthalene acetic acid (NAA). The shoot regeneration frequency of cotyledon and leaf segment was dependent on the kinds and concentrations of cytokinins used in the medium, while in most cases cotyledon gave high regeneration frequency than leaf segment. TDZ proved to be the best cytokinin to induce shoot from both cotyledon and leaf segments compared to BA, KT and CPPU. The highest frequency of shoot regeneration was 61.3-67.9 \% in cotyledon and 40.7-52.4\% in leaf segment respectively when 2.27 or $4.54 \mu \mathrm{M} \mathrm{TDZ}$ was combined with $5.37 \mu \mathrm{M}$ NAA. Next to TDZ, CPPU was also very suitable to induce shoot formation both in cotyledon and leaf segment. When $1.61 \mu \mathrm{M} \mathrm{CPPU}$ was combined with $2.69 \mu \mathrm{M}$ NAA, shoot regeneration frequency was 45.0% in cotyledon and 36.4% in leaf segment, respectively. It was also shown that KT and BA affected shoot regeneration from cotyledon and leaf segment, the shoot regeneration was greatly increased when NAA was added together with cytokinins. The efficient and reliable shoot regeneration system was developed in both cotyledon and leaf segments. This regeneration protocol may be applicable to the improvement of this crop by genetic engineering in the future.

Abbreviations: BA - 6-benzyladenine; CPPU - N-(2-chloro-4-pyridyl)n-phenylurea; KT - 6-furfurylaminopurine (kinetin); MS - Murashige and Skoog medium; NAA - α-naphthalene acetic acid; TDZ thidiazuron

Due to the long history of cultivation and selection, Brassica juncea has several cultivars which are a rich source of germplasm for future crop improvement. Stem mustard (B. juncea var. tsatsai), tsatsai in Chinese, is a very important vegetable crop grown in China (Liu, 1996). Stem mustard is a swelling stem vegetable widely grown in the Changjiang River valley, especially in Shichuan and Zhejiang provinces of China, but
is not well known in other countries (Guo et al., 1994). Successful in vitro culture, regeneration, propagation and transformation from other Brassica species have been reported (Mathews et al., 1985, 1990; Metz et al., 1995; Eapen and George, 1997; Cao and Earle, 2003; Wahlroos et al., 2003). However, a systematic study of in vitro culture of stem mustard is lack. It is necessary to establish the efficient regeneration
system for mass micropropagation and genetic manipulation in this crop because genotypic difference in shoot regeneration existed in B. juncea (Chi et al., 1990; Mathews et al., 1985). In this study, we report the effect of different cytokinins and their concentrations on shoot regeneration of stem mustard and developed a reliable shoot regeneration system by using the most effective cytokinin.

Seeds of stem mustard (B. juncea var. tsatsai cv. Suotouzhong) were washed under running tap water for 2 h followed by a treatment with 80% ethanol for $1 \mathrm{~min}, 0.1 \% \mathrm{HgCl}_{2}$ for 15 min and then rinsed with sterile distilled water for three to four times. The seeds were then inoculated on the growth regulator free MS (Murashige and Skoog, 1962) medium. After 2-week culture, cotyledon and leaf segments were collected, and cut into small pieces of about $0.5 \times 0.5 \mathrm{~cm}$ for further experiments. The MS medium supplemented with $3 \%(\mathrm{w} / \mathrm{v})$ sucrose was used as a basal medium. The medium was solidified with 0.7% (w/v) agar. Plant growth regulators (BA, CPPU, KT, TDZ and NAA) at various concentrations were added and pH was adjusted to 5.7 before autoclaving at $121^{\circ} \mathrm{C}$ for 20 min . Cultures were incubated in flasks (50 ml) containing 20 ml medium and maintained at $25 \pm 2{ }^{\circ} \mathrm{C}$ under a 12-h photoperiod at a light intensity of $45 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$. After 4 weeks of culture, the percentage of explants with adventitious shoots out of the total number of explants (\%) was scored. About 20 explants were used in each treatment and the experiment was repeated 3 times. All data were subjected to statistical analysis using Duncan's Multiple Range Tests at the 1% level.

Callus was induced from cotyledon explants after $10-12$ days of culture on MS media containing different cytokinins (BA, KT, CPPU and TDZ) and auxin NAA. Calli were initiated at the cut ends of the explants and eventually extended all over the explants. Regeneration of green shoot buds occurred in these calli after 3 weeks of culture. The maximum number of shoot bud occurred in the fourth week of culture. More shoots were differentiated at the cut edges than the explant surface. The effect of BA, KT, CPPU and TDZ alone or in combinations with NAA on frequency of shoot regeneration from cotyledon was presented in Table 1. Without addition of auxin NAA, $4.44 \mu \mathrm{M}$ BA was the

optimum concentration for shoot regeneration, the frequency was 23.4%. This was quite similar to the regeneration medium used by Mathews et al. (1990). They cultured cotyledons from 6-day-old seedlings of mustard B. juncea (L.) Czern and Coss for shoot regeneration. TDZ at concentration of $4.54 \mu \mathrm{M}$ was also good for shoot regeneration; the regeneration frequency was 19.4%. With increase in BA or TDZ concentration, shoot induction was greatly inhibited. Without addition of auxin NAA, shoot regeneration frequency from KT or CPPU treatment was significantly lowered compared to BA and TDZ used. Shoots were only induced at lower concentrations of CPPU. Hardly any regenerated shoot was observed in higher concentration of CPPU ($\geq 3.23 \mu \mathrm{M}$, Table 1). Shoot induction in all cytokinins used was obviously enhanced in the presence of auxin NAA. When $2.69 \mu \mathrm{M} \mathrm{NAA}$ was added in the medium combined with other cytokinin, $4.44 \mu \mathrm{M} \mathrm{BA}$, or $1.61 \mu \mathrm{M} \mathrm{CPPU}$ or $4.54 \mu \mathrm{M}$ TDZ gave the highest shoot regeneration potential. At these combinations, their regeneration frequencies were $38.9,45.0$ and 26.1%, respectively (Table 1). These results are similar to Wahlroos et al (2003). They found that $10.74 \mu \mathrm{M} \mathrm{NAA}$ and $17.76 \mu \mathrm{M}$ BAP was the most optimal resulting in 41.6% shoot regeneration efficiency of 5-day-old cotyledon explants from Brassica rapa. However, in our study, when auxin NAA was increased to $5.37 \mu \mathrm{M}$ in the medium combined with other cytokinin BA, KT and CPPU respectively, shoot induction was greatly decreased. But in TDZ treatments shoot regeneration were significantly

Figure 1. Shoot was regenerated from cotyledon explants on MS medium with $4.54 \mu \mathrm{M}$ TDZ and $5.37 \mu \mathrm{M}$ NAA after culture for 4 weeks.
increased when auxin NAA concentration was up to $5.37 \mu \mathrm{M}$. At TDZ concentration of 2.27 or $4.54 \mu \mathrm{M}$, the highest frequency of shoot regeneration reached 61.3 and 67.9%, respectively (Figure 1 and Table 1). With increasing concentration of TDZ from 4.54 to $11.35 \mu \mathrm{M}$, shoot induction was dramatically decreased to 27.4%.

The effect of BA, KT, CPPU and TDZ alone or in combinations with NAA on shoot regeneration from leaf segment was summarized in Table 2. Shoot induction derived from leaf segment with KT treatments was much better than that of cotyledon. Without addition of auxin NAA, $2.32 \mu \mathrm{M} \mathrm{KT}$ was the optimum concentration for shoot regeneration in leaf segment compared to other cytokinins BA, CPPU and TDZ used, the frequency was up to 22.2% (Table 2). The shoot regeneration frequency from leaf segments was also obviously enhanced in the presence of auxin NAA in all cytokinins used. When $2.69 \mu \mathrm{M}$ NAA was added in the medium combined with other cytokinin, $4.44 \mu \mathrm{M} \mathrm{BA}, 2.32 \mu \mathrm{M} \mathrm{KT}, 4.54 \mu \mathrm{M}$ TDZ and $1.61 \mu \mathrm{M}$ CPPU gave the highest shoot regeneration potential (Figure 2 and Table 2). At these combinations, regeneration frequencies were $37.4,37.5,28.5$ and 36.4%, respectively. When auxin NAA was increased to $5.37 \mu \mathrm{M}$ in the medium combined with other cytokinin BA and CPPU respectively, shoot regeneration was not much different compared to NAA at concentration of $2.69 \mu \mathrm{M}$. But in TDZ treatment shoot induction was significantly increased when auxin NAA was up to $5.37 \mu \mathrm{M}$. The highest frequency of shoot regeneration was 40.7% and 52.4% when leaf segments were cultured on 2.27 and $4.54 \mu \mathrm{M}$ TDZ, respectively (Table 2). With increasing concentration of TDZ up to $11.35 \mu \mathrm{M}$, shoot induction was also dramatically decreased to 23.8%. So, at the range of TDZ concentration from 2.27 to $4.54 \mu \mathrm{M}$ combined with $5.37 \mu \mathrm{M}$ NAA, it was the best combination for shoot regeneration from leaf segment.

Mathews et al. (1985, 1990) reported successful regeneration and transformation from mustard B. juncea (L.) Czern and Coss which is an important oilseed crop in India. Our stem mustard (B. juncea var. tsatsai), which is a swelling stem vegetable widely grown in China, is completely different with above mustard. Based on our knowledge, this is the first study in stem mustard that we systematically compared the
Table 2. Effect of different cytokinins combination with NAA on shoot regeneration (expressed as the percentage of total explants that produced shoots) derived from leaf segment of stem mustard after 4-week culture

NAA ($\mu \mathrm{M}$)	BA ($\mu \mathrm{M}$)				KT ($\mu \mathrm{M}$)				CPPU ($\mu \mathrm{M}$)					TDZ ($\mu \mathrm{M}$)				
	0	4.44	8.88	17.76	2.32	4.65	6.97	9.29	0.40	0.81	1.61	3.23	6.46	2.27	4.54	6.81	9.08	11.35
0	0 jk	18.3b	16.8b	14.6b	22.2a*	12.7 bcd	12.5 bcd	6.7efg	1.0ijk	6.2fghi	8.4cdef	7.7defg	6.4efg	12.5bcd	12.8 bcd	8.2cdef	3.1fehij	2.79hij
2.69		37.4a	33.8 bc	31.bc	37.5a	31.6bc	21.4 fghi	12.1igk	26.7def	28.6cdef	36.4a	23.1fgh	21.4fghi	20.9fghi	28.5 cdef	22.9 fghi	16.3hij	15.2ilk
5.37		34.2cdef	31.3cdef	26.5 efg	26.1efg	25.2 fg	21.7 fg	20.8 fg	20.0fg	21.4 fg	31.3cdef	27.5 defg	26.7efg	40.7bc	52.4a	38.1 bc	30.5cdef	23.8 fg

*Data within rows followed by the same letter are not significantly different at the 1% level by Duncan's Multiple Range Test.

Figure 2. Shoots were induced from leaf segments on MS medium with $4.44 \mu \mathrm{M} \mathrm{BA}$ and $2.69 \mu \mathrm{M}$ NAA after culture for 4 weeks.
effects of different cytokinins such as BA, KT, CPPU, and TDZ on shoot regeneration from two types of explants, cotyledon versus leaf segment. The results demonstrated that it is possible to directly induce shoot regeneration by using different cytokinins combination with NAA from both cotyledon and leaf segments of B. juncea var. tastsai. Among the cytokinins tested, TDZ proved to have the highest shoot regeneration frequency from 61.3 to 67.9% in cotyledon and from 40.7 to 52.4% in leaf segment when $2.27-4.54 \mu \mathrm{M} \mathrm{TDZ}$ was combined with $5.37 \mu \mathrm{M}$ NAA, respectively. Our results are similar to those of Kim et al. (1997), who reported optimal TDZ for stable shoot proliferation of green ash. Next to TDZ, CPPU was also suitable to induce shoot formation both in cotyledon and leaf segment. KT indicated poor response of shoot formation in cotyledon. But shoot regeneration in leaf segment was much better than that of cotyledon (Table 2). In the present study, higher concentration of NAA suppressed the rate of shoot regeneration in some cases, but shoot morphology was not affected. In general, the explant type had a different regenerative capacity; cotyledon in most cases had high shoot regeneration frequency and regenerated much more shoots than leaf segment.

The results show that a high frequency of shoot regeneration in B. juncea var. tsatsai could be achieved both from cotyledon and leaf segments. The protocol reported here is efficient and reliable. Just like other Brassica species (Mathews et al., 1990; Metz et al., 1995; Cao and Earle, 2003;

Wahlroos et al., 2003), which were reported in successful genetic transformation, this protocol may be useful in genetic improvement by using transgenic approach because this crop is suffering a severe virus infection in China.

Acknowledgements

This study was supported by a grant No. 30270908 from the National Natural Science Foundation of China. Authors were indebted to Shao-Bing Yan, Hangzhou Seed Company, for providing stem mustard seeds.

References

Cao J \& Earle ED (2003) Transgene expression in broccoli (Brassica oleracea var. italica) clones progated in vitro leaf explants. Plant Cell Rep. 21: 789-796
Chi GL, Barfield DG, Sim GE \& Pua EC (1990) Effect of silver nitrate and aminoethoxyvinylglycine on in vitro shoot and root organogenesis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep. 9: 195-198
Eapen S \& George L (1997) Plant regeneration from peduncle segments of oil seed Brassica species: influence of silver
nitrate and silver thiosulfate. Plant Cell Tiss. Org. Cult. 51: 229-232
Guo DP, Jiang YT, Zeng GW \& Shah GA (1994) Stem swelling of stem mustard, as affected by temperature and growth regulators. Sci. Hort. 60: 153-160
Kim MS, Schumann CM \& Klopfenstein NB (1997) Effects of thidiazuron and benzylaminopurine on axillary shoot proliferation of three green ash (Fraxinus pennsylvanica Marsh.) clones. Plant Cell Tiss. Org. Cult. 48: 45-52
Liu PY (1996) Chinese Mustard. China Agriculture Press, Beijing
Mathews VH, Bhatia CR, Mitra R, Krishna TG \& Rao PS (1985) Regeneration of shoots from Brassica juncea (Linn.) Czern and Coss cells transformed by Agrobacterium tumefaciens and expression of nopaline dehydrogenase genes. Plant Sci. 39: 49-54
Mathews VH, Bharathan N, Litz RZ, Rao PS \& Bhatia CR (1990) Transgenic plants of mustard Brassica juncea L. czern and coss. Plant Sci. 72: 245-252
Metz TD, Dixit R \& Earle ED (1995) Agrobacterium tumefac-iens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep. 15: 287-292
Murashige T \& Skoog F (1962) A revised medium for rapid growth and bioassay with tobacoo tissue culture. Physiol. Plant. 15: 473-495
Wahlroos T, Susi P, Tylkina L, Malyshenko S, Zvereva S \& Korpela T (2003) Agrobacterium- mediated transformation and stable expression of the green fluorescent protein in Brassic arapa. Plant Physiol. Biochem. 41: 773-778

