44 research outputs found

    Complex conformational dynamics of the heart failure‐associated pre‐mirna‐377 hairpin revealed by single‐molecule optical tweezers

    Get PDF
    pre‐miRNA‐377 is a hairpin‐shaped regulatory RNA associated with heart failure. Here, we use single‐molecule optical tweezers to unzip pre‐miRNA‐377 and study its stability and dy-namics. We show that magnesium ions have a strong stabilizing effect, and that sodium ions stabi-lize the hairpin more than potassium ions. The hairpin unfolds in a single step, regardless of buffer composition. Interestingly, hairpin folding occurs either in a single step (type 1) or through the formation of intermediates, in multiple steps (type 2) or gradually (type 3). Type 3 occurs only in the presence of both sodium and magnesium, while type 1 and 2 take place in all buffers, with type 1 being the most prevalent. By reducing the size of the native hairpin loop from fourteen to four nu-cleotides, we demonstrate that the folding heterogeneity originates from the large size of the hairpin loop. Further, while efficient pre‐miRNA‐377 binders are lacking, we demonstrate that the recently developed C2 ligand displays bimodal activity: it enhances the mechanical stability of the pre-miRNA‐377 hairpin and perturbs its folding. The knowledge regarding pre‐miRNA stability and dynamics that we provide is important in understanding its regulatory function and how it can be modulated to achieve a therapeutic effect, e.g., in heart failure treatment

    Interbase-FRET binding assay for pre-microRNAs

    Get PDF
    The aberrant expression of microRNAs (miRs) has been linked to several human diseases. A promising approach for targeting these anomalies is the use of small-molecule inhibitors of miR biogenesis. These inhibitors have the potential to (i) dissect miR mechanisms of action, (ii) discover new drug targets, and (iii) function as new therapeutic agents. Here, we designed Forster resonance energy transfer (FRET)-labeled oligoribonucleotides of the precursor of the oncogenic miR-21 (pre-miR-21) and used them together with a set of aminoglycosides to develop an interbase-FRET assay to detect ligand binding to pre-miRs. Our interbase-FRET assay accurately reports structural changes of the RNA oligonucleotide induced by ligand binding. We demonstrate its application in a rapid, qualitative drug candidate screen by assessing the relative binding affinity between 12 aminoglycoside antibiotics and pre-miR-21. Surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) were used to validate our new FRET method, and the accuracy of our FRET assay was shown to be similar to the established techniques. With its advantages over SPR and ITC owing to its high sensitivity, small sample size, straightforward technique and the possibility for high-throughput expansion, we envision that our solution-based method can be applied in pre-miRNA-target binding studies

    Getting DNA and RNA out of the dark with 2CNqA: a bright adenine analogue and interbase FRET donor

    Get PDF
    With the central role of nucleic acids there is a need for development of fluorophores that facilitate the visualization of processes involving nucleic acids without perturbing their natural properties and behaviour. Here, we incorporate a new analogue of adenine, 2CNqA, into both DNA and RNA, and evaluate its nucleobase-mimicking and internal fluorophore capacities. We find that 2CNqA displays excellent photophysical properties in both nucleic acids, is highly specific for thymine/uracil, and maintains and slightly stabilises the canonical conformations of DNA and RNA duplexes. Moreover, the 2CNqA fluorophore has a quantum yield in single-stranded and duplex DNA ranging from 10% to 44% and 22% to 32%, respectively, and a slightly lower one (average 12%) inside duplex RNA. In combination with a comparatively strong molar absorptivity for this class of compounds, the resulting brightness of 2CNqA inside double-stranded DNA is the highest reported for a fluorescent base analogue. The high, relatively sequence-independent quantum yield in duplexes makes 2CNqA promising as a nucleic acid label and as an interbase F\uf6rster resonance energy transfer (FRET) donor. Finally, we report its excellent spectral overlap with the interbase FRET acceptors qAnitro and tCnitro, and demonstrate that these FRET pairs enable conformation studies of DNA and RNA

    Complex Conformational Dynamics of the Heart Failure-Associated Pre-miRNA-377 Hairpin Revealed by Single-Molecule Optical Tweezers

    No full text
    Pre-miRNA-377 is a hairpin-shaped regulatory RNA associated with heart failure. Here, we use single-molecule optical tweezers to unzip pre-miRNA-377 and study its stability and dynamics. We show that magnesium ions have a strong stabilizing effect, and that sodium ions stabilize the hairpin more than potassium ions. The hairpin unfolds in a single step, regardless of buffer composition. Interestingly, hairpin folding occurs either in a single step (type 1) or through the formation of intermediates, in multiple steps (type 2) or gradually (type 3). Type 3 occurs only in the presence of both sodium and magnesium, while type 1 and 2 take place in all buffers, with type 1 being the most prevalent. By reducing the size of the native hairpin loop from fourteen to four nucleotides, we demonstrate that the folding heterogeneity originates from the large size of the hairpin loop. Further, while efficient pre-miRNA-377 binders are lacking, we demonstrate that the recently developed C2 ligand displays bimodal activity: it enhances the mechanical stability of the pre-miRNA-377 hairpin and perturbs its folding. The knowledge regarding pre-miRNA stability and dynamics that we provide is important in understanding its regulatory function and how it can be modulated to achieve a therapeutic effect, e.g., in heart failure treatment
    corecore