673 research outputs found

    Didaktische Gedanken zur EinfĂŒhrung der Lage chemischer Gleichgewichte im gymnasialen Chemieunterricht

    Get PDF

    Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite

    Get PDF
    The conversion of amorphous tricalcium phosphate with different hydration ratio into apatite in water at 25 °C has been studied by microcalorimetry and several physical–chemical methods. The hydrolytic transformation was dominated by two strong exothermic events. A fast, relatively weak, wetting process and a very slow but strong heat release assigned to a slow internal rehydration and the crystallization of the amorphous phase into an apatite. The exothermic phenomenon related to the rehydration exceeded the crystalline transformation enthalpy. Rehydration occurred before the conversion of the amorphous phase into apatite and determined the advancement of the hydrolytic reaction. The apatitic phases formed evolved slightly with time after their formation. The crystallinity increased whereas the amount of HPO4 2− ion decreased. These data allow a better understanding of the behavior of biomaterials involving amorphous phases such as hydroxyapatite plasma-sprayed coating

    Selectivity Enhancement for Chloride Ion by In(III)‐Porphyrin‐Based Polymeric Membrane Electrode Operated in Pulsed Chronopotentiometric Mode

    Full text link
    A robust selectivity enhancement of an In(III)‐porphyrin ionophore‐based chloride‐selective electrode under pulsed chronopotentiometric measurement mode that enables the detection of chloride ions in the presence of a normally interfering concentration of salicylate ions is described. This enhancement is achieved by the rapid depletion of the surface concentration of the more dilute lipophilic anion during an initial anodic current pulse period due to extraction of this preferred anion into the membrane phase. Measurement of chloride with a detection limit of 8 mM and near Nernstian response slope in the presence of 1 mM salicylate is possible using the pulstrode method.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90345/1/643_ftp.pd

    Multimodal Aerial Locomotion:An Approach to Active Tool Handling

    Get PDF
    The research focus in aerial robotics is shifting from contactless inspection toward interaction and manipulation, with the number of potential applications rapidly increasing [1]. Eventually, aerial manipulators, i.e., unmanned aerial vehicles (UAVs) equipped with manipulators, will likely take on hazardous maintenance tasks now performed by humans. For this to happen, aerial manipulators must be able to perform all the different operations required in these maintenance routines

    Synergistic inhibition of the calcification of glutaraldehyde pretreated bovine pericardium in a rat subdermal model by FeCl3 and ethanehydroxydiphosphonate: pre-incubation and polymeric controlled release studies

    Full text link
    Calcification is a frequent cause of the clinical failure of bioprosthetic heart valves fabricated from glutaraldehyde-pretreated porcine aortic valves or glutaraldehyde-pretreated bovine pericardium (GPBP). We investigated the hypothesis that ferric chloride (FeCl3) and sodiumethanehydroxydiphosphonate (EHDP) may act synergistically to prevent bioprosthetic tissue calcification. Pre-incubations and controlled release systems were studied individually. FeCl3-EHDP polymeric controlled release matrices were formulated using silicone rubber and evaluated for in vitro release kinetics at pH 7.4 and 37[deg]C. The effects of Fe-EHDP synergism on GPBP calcification were investigated with 21 d subdermal implants in 3 wk-old male rats. Results demonstrated that levels of Fe3+ and EHDP uptake, measured in GPBP tissues pre-incubated first in an FeCl3 solution (10-5 ) followed by an EHDP solution (0.1 ), were higher than in the reverse order of incubation. In the first series of rat implants, GPBP was pre-incubated in either FeCl3 or Na2EHDP solutions, or sequential pre-incubations of first FeCl3 and then Na2EHDP solutions, or the reverse. The inhibition of calcification was greatest when FeCl3 (first preincubation, 10-5 ) was combined with Na2EHDP (second pre-incubation, 0.1 ) (1.78 +/- 0.2 [mu]g of Ca2+/mg of dried tissue) compared with the other pre-incubation groups: EHDP (first preincubation) combined with FeCl3 (second pre-incubation) (21.7 +/- 6.4), FeCl3 solution alone at 10-5 (27.9 +/- 10.7), Na2EHDP solution alone at 0.1 (52.3 +/- 11.9) and the control group (72.3 +/- 10.2). In a second series of implants, GPBP specimens were co-implanted with individual controlled release systems containing one of the following formulations (weight percentage in silicone rubber): 1% FeCl3, 20% CaEHDP, 20% protamine sulphate, 1% FeCl3-20% CaEHDP, and 1% FeCl3-20% protamine sulphate. The 1% FeCl3-20% CaEHDP silicone-rubber matrices were the most effective for inhibiting GPBP mineralization (13.7 +/- 3.0 [mu]g Ca2+/mg of dried tissue) compared with non-drug silicone co-implant controls (74.7 +/- 5.58 [mu]g Ca2+/mg of dried tissue) and other polymeric treatment groups (32.3 +/- 2.3-80.0 +/- 19.7). No adverse effects on bone or overall growth of any treatment protocols were noted. Thus, combinations of FeCl3 and EHDP, using either pre-incubations or polymeric controlled release, were synergistic for inhibiting GPBP calcification.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30723/1/0000370.pd

    Intravesicular Phosphatase PHOSPHO1 Function in Enamel Mineralization and Prism Formation

    Get PDF
    The transport of mineral ions from the enamel organ-associated blood vessels to the developing enamel crystals involves complex cargo packaging and carriage mechanisms across several cell layers, including the ameloblast layer and the stratum intermedium. Previous studies have established PHOSPHO1 as a matrix vesicle membrane-associated phosphatase that interacts with matrix vesicles molecules phosphoethanolamine and phosphocholine to initiate apatite crystal formation inside of matrix vesicles in bone. In the present study, we sought to determine the function of Phospho1 during amelogenesis. PHOSPHO1 protein localization during amelogenesis was verified using immunohistochemistry, with positive signals in the enamel layer, ameloblast Tomes' processes, and in the walls of ameloblast secretory vesicles. These ameloblast secretory vesicle walls were also labeled for amelogenin and the exosomal protein marker HSP70 using immunohistochemistry. Furthermore, PHOSPHO1 presence in the enamel organ was confirmed by Western blot. Phospho1−/− mice lacked sharp incisal tips, featured a significant 25% increase in total enamel volume, and demonstrated a significant 2-fold reduction in silver grain density of von Kossa stained ground sections indicative of reduced mineralization in the enamel layer when compared to wild-type mice (p < 0.001). Scanning electron micrographs of Phospho1−/− mouse enamel revealed a loss of the prominent enamel prism “picket fence” structure, a loss of parallel crystal organization within prisms, and a 1.56-fold increase in enamel prism width (p < 0.0001). Finally, EDS elemental analysis demonstrated a significant decrease in phosphate incorporation in the enamel layer when compared to controls (p < 0.05). Together, these data establish that the matrix vesicle membrane-associated phosphatase PHOSPHO1 is essential for physiological enamel mineralization. Our findings also suggest that intracellular ameloblast secretory vesicles have unexpected compositional similarities with the extracellular matrix vesicles of bone, dentin, and cementum in terms of vesicle membrane composition and intravesicular ion assembly

    Effects of metallic ions and diphosphonates on inhibition of pericardial bioprosthetic tissue calcification and associated alkaline phosphatase activity

    Full text link
    This study focused on the association of extrinsic alkaline phosphatase (AP) activity with both early and advanced calcification of glutaraldehyde-pretreated bovine pericardial bioprosthetic (GPBP) tissue, and the inhibition of both calcification and AP activity by pre-incubation in diphosphonates (sodium-ethanehydroxydiphosphonate [NaEHDP], aminopropanehydroxydiphosphonate [APD]) and metallic salts (FeCl3 Ga(NO3)3, AlCl3). GPBP specimens were implanted subcutaneously in 3 wk old male rats after ore-incubation. Following explantation of the tissue at 72 h and 21 d, calcification was assessed morphologically by light microscopy and chemically by atomic adsorption spectroscopy for calcium content and by molybdate complexation for phosphorus. AP activity was characterized by enzymatic hydrolysis of paranitrophenyl phosphate and by histochemical studies. In both control and pretreated groups, AP levels were greater in 72 h explants than 21 d retrievals, which demonstrated extensive calcification in control expiants. All pre-incubations that resulted in inhibition of calcification after 21 d, except for APD, were associated with 72 h AP content which was lower than control specimens. The typical time of initiation of calcification was 72 h, as determined by previous studies with this model system. Covalently bound APD inhibited calcification. Increased AP activity in the APD group may be due to the toxicity of this agent with resultant acute inflammation, or other incompletely understood effects of diphosphonates on calcification and AP. Furthermore, EHDP and Ga3+ incubations were also associated with decreased GPBP AP at 72 h compared to control, but were not effective for inhibiting calcification after 21 d. We concluded that inhibition of peak GPBP AP activity is not necessarily associated with the prevention of GPBP mineralization.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30881/1/0000547.pd
    • 

    corecore