56 research outputs found

    Identification of Pax6-Dependent Gene Regulatory Networks in the Mouse Lens

    Get PDF
    Lineage-specific DNA-binding transcription factors regulate development by activating and repressing particular set of genes required for the acquisition of a specific cell type. Pax6 is a paired domain and homeodomain-containing transcription factor essential for development of central nervous, olfactory and visual systems, as well as endocrine pancreas. Haploinsufficiency of Pax6 results in perturbed lens development and homeostasis. Loss-of-function of Pax6 is incompatible with lens lineage formation and results in abnormal telencephalic development. Using DNA microarrays, we have identified 559 genes expressed differentially between 1-day old mouse Pax6 heterozygous and wild type lenses. Of these, 178 (31.8%) were similarly increased and decreased in Pax6 homozygous embryonic telencephalon [Holm PC, Mader MT, Haubst N, Wizenmann A, Sigvardsson M, Götz M (2007) Loss- and gain-of-function analyses reveals targets of Pax6 in the developing mouse telencephalon. Mol Cell Neurosci 34: 99–119]. In contrast, 381 (68.2%) genes were differently regulated between the lens and embryonic telencephalon. Differential expression of nine genes implicated in lens development and homeostasis: Cspg2, Igfbp5, Mab21l2, Nrf2f, Olfm3, Spag5, Spock1, Spon1 and Tgfb2, was confirmed by quantitative RT-PCR, with five of these genes: Cspg2, Mab21l2, Olfm3, Spag5 and Tgfb2, identified as candidate direct Pax6 target genes by quantitative chromatin immunoprecipitation (qChIP). In Mab21l2 and Tgfb2 promoter regions, twelve putative individual Pax6-binding sites were tested by electrophoretic mobility shift assays (EMSAs) with recombinant Pax6 proteins. This led to the identification of two and three sites in the respective Mab21l2 and Tgfb2 promoter regions identified by qChIPs. Collectively, the present studies represent an integrative genome-wide approach to identify downstream networks controlled by Pax6 that control mouse lens and forebrain development

    Switching on the Lights for Gene Therapy

    Get PDF
    Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application

    Neutrophil Paralysis in Plasmodium vivax Malaria

    Get PDF
    Plasmodium vivax is responsible for approximately 60–80% of the malaria cases in the world, and contributes to significant social and economic instability in the developing countries of Latin America and Asia. The pathogenesis of P. vivax malaria is a consequence of host derived inflammatory mediators. Hence, a better understanding of the mechanisms involved in induction of systemic inflammation during P. vivax malaria is critical for the clinical management and prevention of severe disease. The innate immune receptors recognize Plasmodium sp. and initiate a broad spectrum of host defense mechanisms that mediate resistance to infection. However, the innate immune response is the classic “two-edged sword”, and clinical malaria is associated with high levels of circulating pro-inflammatory cytokines. Our findings show that both monocytes and neutrophils are highly activated during malaria. Monocytes produced high levels of IL-1β, IL-6 and TNF-α during acute malaria. On the other hand, neutrophils were a poor source of cytokines, but displayed an enhanced phagocytic activity and superoxide production. Unexpectedly, we noticed an impaired chemotaxis of neutrophils towards an IL-8 (CXCL8) gradient. We proposed that neutrophil paralysis is in part responsible for the enhanced susceptibility to bacterial infection observed in malaria patients

    Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi

    Get PDF

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Fluid dynamics of flow fields in a disposable 600-mL orbitally shaken bioreactor

    No full text
    Orbitally shaken bioreactors (OSRs) are commonly used for the cultivation of mammalian cells in suspension. Here we conducted a three-dimensional computational fluid dynamics (CFD) simulation to characterize the fluid field in the disposable 600-mL orbitally shaken bioreactor (OSR600), basically a cylindrical vessel with a conical bottom and a ventilated cap. The CFD models established for the OSR600 were validated by visual comparison of the liquid flow pattern, in an experimentally agitated OSR600. In the model, both shear stress and energy dissipation rate (Phi) were calculated to evaluate the hydrodynamic stress environment for cell cultivation. The highest values of shear stress and Phi were localized along the lower part of the conical vessel wall. The effect of filling volume and shaking speed on k(L)a, Phi and shear stress were also analyzed. An increase of the percentage of the liquid affected by higher shear stress and Phi was observed at filling volumes of 300 mL and 400 mL compared to lower filling volumes. This may be due to the twisted curvature at the base of the liquid wave under these conditions. In conclusion, the CFD model provided a means to characterize the fluid dynamics of the OSR600 under various operating conditions to help identify those most suitable for cell cultivation. (C) 2017 Elsevier B.V. All rights reserved

    Human PBMCs Form Lipid Droplets in Response to Spike Proteins

    No full text
    Intracellular lipid droplets (LDs) can accumulate in response to inflammation, metabolic stresses, and other physiological/pathological processes. Herein, we investigated whether spike proteins of SARS-CoV-2 induce LDs in human peripheral blood mononuclear cells (PBMCs) and in pulmonary microvascular endothelial cells (HPMECs). PBMCs or HPMECs were incubated alone or with endotoxin-free recombinant variants of trimeric spike glycoproteins (Alpha, Beta, Delta, and Omicron, 12 µg/mL). Afterward, cells were stained with Oil Red O for LDs, cytokine release was determined through ELISA, and the gene expression was analyzed through real-time PCR using TaqMan assays. Our data show that spikes induce LDs in PBMCs but not in HPMECs. In line with this, in PBMCs, spike proteins lower the expression of genes involving lipid metabolism and LD formation, such as SREBF1, HMGCS1, LDLR, and CD36. On the other hand, PBMCs exposed to spikes for 6 or 18 h did not increase in IL-1β, IL-6, IL-8, MCP-1, and TNFα release or expression as compared to non-treated controls. Thus, spike-induced LD formation in PBMCs seems to not be related to cell inflammatory activation. Further detailed studies are warranted to investigate in which specific immune cells spikes induce LDs, and what are the pathophysiological mechanisms and consequences of this induction in vivo

    The Delivery of alpha 1-Antitrypsin Therapy Through Transepidermal Route: Worthwhile to Explore

    No full text
    Human alpha 1-antitrypsin (AAT) is an abundant acute phase glycoprotein expressing anti-protease and immunomodulatory activities, and is used as a biopharmaceutical to treat patients with inherited AAT deficiency. The pleiotropic properties of AAT provide a rationale for using this therapy outside of inherited AAT deficiency. Therapy with AAT is administrated intravenously, yet the alternative routes are being considered. To examine the putative transepidermal application of AAT we used epiCS (R), the 3D human epidermis equivalents reconstructed from human primary epidermal keratinocytes. We topically applied various concentrations of AAT protein with a constant volume of 50 mu l, prepared in Hank's balance solution, HBSS, to epiCS cultured under bas\al condition or when culture medium supplemented with 100 mu g/ml of a combined bacterial lipopolysaccharide (LPS) and peptidoglycan (PGN) mixture. AAT freely diffused across epidermis layers in a concentration and time-dependent manner. Within 18 h topically provided 0.2 mg AAT penetrated well the stratum corneum and localizes within the keratinocytes. The treatments with AAT did not induce obvious morphological changes and damages in keratinocyte layers. As expected, LPS/PGN triggered a strong pro-inflammatory activation of epiCS. AAT exhibited a limited capacity to neutralize the effect of LPS/PGN, but more importantly, it lowered expression of IL-18 and IL-8, and preserved levels of filaggrin, a key protein for maintaining the epidermal barrier integrity. Our findings suggest that the transepidermal route for delivering AAT is worthwhile to explore further. If successful, this approach may offer an easy-to-use therapy with AAT for skin inflammatory diseases

    Trimeric SARS-CoV-2 Spike Proteins Produced from CHO Cells in Bioreactors Are High-Quality Antigens

    Get PDF
    The spike protein of the pandemic human corona virus is essential for its entry into human cells. In fact, most neutralizing antibodies against Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) are directed against the Virus-surface exposed spike protein, making it the antigen of choice for use in vaccines and diagnostic tests. In the current pandemic context, global demand for spike proteins has rapidly increased and could exceed hundreds of grams to kilograms annually. Coronavirus spikes are large heavily glycosylated homo-trimeric complexes, with inherent instability. The poor manufacturability now threatens the availability of these proteins for vaccines and diagnostic tests. Here, we outline scalable, Good Manufacturing Practice (GMP) compliant, and chemically defined processes for the production of two cell-secreted stabilized forms of the trimeric spike proteins (Wuhan and D614G variant). The processes are chemically defined and based on clonal suspension-CHO cell populations and on protein purification via a two-step scalable downstream process. The trimeric conformation was confirmed using electron microscopy and HPLC analysis. Binding to susceptible cells was shown using a virus-inhibition assay. The diagnostic sensitivity and specificity for detection of serum SARS-CoV-2-specific-immunoglobulin molecules was found to exceed that of spike fragments (Spike subunit-1, S1 and Receptor Binding Domain, RBD). The process described here will enable production of sufficient high-quality trimeric spike protein to meet the global demand for SARS-CoV-2 diagnostic tests and potentially vaccines
    corecore