155 research outputs found

    I Can Say Truly Rural

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1637/thumbnail.jp

    That Old Fashioned Mother Of Mine

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/6755/thumbnail.jp

    I Want To Sing In Opera

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/2886/thumbnail.jp

    Which Swiitch Is The Switch, Miss, For Ipswich

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5479/thumbnail.jp

    Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 7300–7315, doi:10.1002/2015JC011093.Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate-volatile and semivolatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultraviolet time of flight mass spectrometry (GC-VUV-HR-ToFMS). All hydrocarbons with 10–30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ∼70% of total oil mass. Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind-tunnel measurements. Using this model, we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable subsurface transport of oil.Funded by Gulf of Mexico Research Initiative2016-05-0

    Investigation of chlorine radical chemistry in the Eyjafjallajkull volcanic plume using observed depletions in non-methane hydrocarbons

    Get PDF
    As part of the effort to understand volcanic plume composition and chemistry during the eruption of the Icelandic volcano Eyjafjallajkull, the CARIBIC atmospheric observatory was deployed for three special science flights aboard a Lufthansa passenger aircraft. Measurements made during these flights included the collection of whole air samples, which were analyzed for non-methane hydrocarbons (NMHCs). Hydrocarbon concentrations in plume samples were found to be reduced to levels below background, with relative depletions characteristic of reaction with chlorine radicals (Cl). Recent observations of halogen oxides in volcanic plumes provide evidence for halogen radical chemistry, but quantitative data for free halogen radical concentrations in volcanic plumes were absent. Here we present the first observation-based calculations of Cl radical concentrations in volcanic plumes, estimated from observed NMHC depletions. Inferred Cl concentrations were between 1.3 × 10 and 6.6 × 10 Cl cm. The relationship between NMHC variability and local lifetimes was used to investigate the ratio between OH and Cl within the plume, with [OH]/[Cl] estimated to be ∼37. Copyright 2011 by the American Geophysical Union

    Observational Insights into Aerosol Formation from Isoprene

    Get PDF
    Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO_2) and hydroperoxyl (HO_2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F_(MAE formation)). The strong temperature dependence of F_(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS;~1 ng m^(–3)) and MAE-derived organosulfates (MAE-OS;~1 ng m^(–3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m^(–3)) relative to MAE-OS (<0.0005 ng m^(–3)) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10−100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NO_x, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source
    • …
    corecore