198 research outputs found

    Catastrophic Floods May Pave the Way for Increased Genetic Diversity in Endemic Artesian Spring Snail Populations

    Get PDF
    The role of disturbance in the promotion of biological heterogeneity is widely recognised and occurs at a variety of ecological and evolutionary scales. However, within species, the impact of disturbances that decimate populations are neither predicted nor known to result in conditions that promote genetic diversity. Directly examining the population genetic consequences of catastrophic disturbances however, is rarely possible, as it requires both longitudinal genetic data sets and serendipitous timing. Our long-term study of the endemic aquatic invertebrates of the artesian spring ecosystem of arid central Australia has presented such an opportunity. Here we show a catastrophic flood event, which caused a near total population crash in an aquatic snail species (Fonscochlea accepta) endemic to this ecosystem, may have led to enhanced levels of within species genetic diversity. Analyses of individuals sampled and genotyped from the same springs sampled both pre (1988–1990) and post (1995, 2002–2006) a devastating flood event in 1992, revealed significantly higher allelic richness, reduced temporal population structuring and greater effective population sizes in nearly all post flood populations. Our results suggest that the response of individual species to disturbance and severe population bottlenecks is likely to be highly idiosyncratic and may depend on both their ecology (whether they are resilient or resistant to disturbance) and the stability of the environmental conditions (i.e. frequency and intensity of disturbances) in which they have evolved

    Molecular and morphological validation of the species of the genus Actinia (Actiniaria: Actiniidae) along the Atlantic Iberian Peninsula

    Get PDF
    The discrimination between the several species of the genus Actinia occurring in the Northeastern Atlantic and Mediterranean has been made analyzing morphological characters, with emphasis on external coloration patterns and morphology of cnidom structures. In Iberia, the occurrence of more than two species of Actinia has been suggested, but its validity is yet to be confirmed. In this paper, the identity of the species of the genus Actinia occurring along the Atlantic Iberian coast is investigated, analyzing morphological and molecular procedures. For this purpose, genetic data was collected from 140 individuals and two genetic markers were amplified and sequenced (the nuclear 28S and the mitochondrial 16S ribosomal genes). The genetic identification was corroborated by morphological analysis of individuals representing each of the genetic groups found. This procedure led to the identification of three species occurring in the studied area – Actinia equina (L.), A. fragacea Tugwell and A. schmidti Monteiro, Sole-Cava & Thorpe.Fundação para a Ciência e Tecnologia - FCTinfo:eu-repo/semantics/publishedVersio

    Comparative phylogeography and asymmetric hybridization between cryptic bat species

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordCryptic speciation and hybridization are two key processes that affect the origin and maintenance of biodiversity and our ability to understand and estimate it. To determine how these two processes interact, we studied allopatric and sympatric colonies of two cryptic bat species (Eptesicus serotinus and Eptesicus isabellinus) with parapatric distribution in the Iberian Peninsula. These species are the main reservoir for the most commonly rabies virus found in bats in Europe: the European bat Lyssavirus type 1 (EBLV‐1). We used mtDNA and nuclear microsatellite markers to confirm the taxonomic status of both species and to show a more pronounced and geographically based genetic structure in E. isabellinus than in its sibling E. serotinus. Using approximate Bayesian computation (ABC), we inferred rapid range expansion in both species after the Last Glacial Maximum until reaching their present distributions. ABC analysis also supported interspecific differences in genetic diversity and structure, pointing to an earlier expansion of E. isabellinus northward. We found no evidence of mitochondrial introgression between species, but nuclear markers identified a male‐mediated ongoing asymmetric hybridization from E. isabellinus to E. serotinus (28% hybrids in E. serotinus and 5% in E. isabellinus) in the contact zone. Although none of the bats studied tested positive for Lyssavirus RNA, the asymmetric hybridization supports the potential for the recently suggested interspecific transmission of EBLV‐1 from E. isabellinus into E. serotinus.Severo Ochoa ProgramMinisterio de Agricultura, Alimentación y Medio AmbienteConsejo Superior de Investigaciones CientíficasMinisterio de Ciencia e InnovaciónNatural Environment Research Council (NERC

    The Role of DNA Barcodes in Understanding and Conservation of Mammal Diversity in Southeast Asia

    Get PDF
    Southeast Asia is recognized as a region of very high biodiversity, much of which is currently at risk due to habitat loss and other threats. However, many aspects of this diversity, even for relatively well-known groups such as mammals, are poorly known, limiting ability to develop conservation plans. This study examines the value of DNA barcodes, sequences of the mitochondrial COI gene, to enhance understanding of mammalian diversity in the region and hence to aid conservation planning.DNA barcodes were obtained from nearly 1900 specimens representing 165 recognized species of bats. All morphologically or acoustically distinct species, based on classical taxonomy, could be discriminated with DNA barcodes except four closely allied species pairs. Many currently recognized species contained multiple barcode lineages, often with deep divergence suggesting unrecognized species. In addition, most widespread species showed substantial genetic differentiation across their distributions. Our results suggest that mammal species richness within the region may be underestimated by at least 50%, and there are higher levels of endemism and greater intra-specific population structure than previously recognized.DNA barcodes can aid conservation and research by assisting field workers in identifying species, by helping taxonomists determine species groups needing more detailed analysis, and by facilitating the recognition of the appropriate units and scales for conservation planning

    Evidence for the ‘Good Genes’ Model: Association of MHC Class II DRB Alleles with Ectoparasitism and Reproductive State in the Neotropical Lesser Bulldog Bat, Noctilio albiventris

    Get PDF
    The adaptive immune system has a major impact on parasite resistance and life history strategies. Immunological defence is costly both in terms of immediate activation and long-term maintenance. The ‘good genes’ model predicts that males with genotypes that promote a good disease resistance have the ability to allocate more resources to reproductive effort which favours the transmission of good alleles into future generations. Our study shows a correlation between immune gene constitution (Major Histocompatibility Complex, MHC class II DRB), ectoparasite loads (ticks and bat flies) and the reproductive state in a neotropical bat, Noctilio albiventris. Infestation rates with ectoparasites were linked to specific Noal-DRB alleles, differed among roosts, increased with body size and co-varied with reproductive state particularly in males. Non-reproductive adult males were more infested with ectoparasites than reproductively active males, and they had more often an allele (Noal-DRB*02) associated with a higher tick infestation than reproductively active males or subadults. We conclude that the individual immune gene constitution affects ectoparasite susceptibility, and contributes to fitness relevant trade-offs in male N. albiventris as suggested by the ‘good genes’ model
    corecore