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Abstract:

Cryptic speciation and hybridization are two key processes that affect the 
origin and maintenance of biodiversity and our ability to understand and 
estimate it. To determine how these two processes interact, we studied 
allopatric and sympatric colonies of two cryptic bat species (Eptesicus 
serotinus and E. isabellinus) with parapatric distribution in the Iberian 
Peninsula. These species are the main reservoir for the most commonly 
rabies virus found in bats in Europe: the European Bat Lyssavirus type 1 
(EBLV-1). We used mtDNA and nuclear microsatellite markers to confirm 
the taxonomic status of both species and to show a more pronounced 
and geographically-based genetic structure in E. isabellinus than in its 
sibling E. serotinus. Using Approximate Bayesian Computation (ABC) we 
inferred rapid range expansion in both species after the Last Glacial 
Maximum until reaching their present distributions. ABC analysis also 
supported interspecific differences in genetic diversity and structure, 
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pointing to an earlier expansion of E. isabellinus northwards.  We found 
no evidence of mitochondrial introgression between species, but nuclear 
markers identified a male-mediated ongoing asymmetric hybridization 
from E. isabellinus to E. serotinus (28% hybrids in E. serotinus and 5% 
in E. isabellinus) in the contact zone. Although none of the bats studied 
tested positive for Lyssavirus RNA, the asymmetric hybridization 
supports the potential for the recently suggested interspecific 
transmission of EBLV-1 from E. isabellinus into E. serotinus.
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27 ABSTRACT

28 Cryptic speciation and hybridization are two key processes that affect the origin and 

29 maintenance of biodiversity and our ability to understand and estimate it. To determine how 

30 these two processes interact, we studied allopatric and sympatric colonies of two cryptic bat 

31 species (Eptesicus serotinus and E. isabellinus) with parapatric distribution in the Iberian 

32 Peninsula. These species are the main reservoir for the most commonly rabies virus found in 

33 bats in Europe: the European Bat Lyssavirus type 1 (EBLV-1). We used mtDNA and nuclear 

34 microsatellite markers to confirm the taxonomic status of both species and to show a more 

35 pronounced and geographically-based genetic structure in E. isabellinus than in its sibling E. 

36 serotinus. Using Approximate Bayesian Computation (ABC) we inferred rapid range 

37 expansion in both species after the Last Glacial Maximum until reaching their present 

38 distributions. ABC analysis also supported interspecific differences in genetic diversity and 

39 structure, pointing to an earlier expansion of E. isabellinus northwards.  We found no 

40 evidence of mitochondrial introgression between species, but nuclear markers identified a 

41 male-mediated ongoing asymmetric hybridization from E. isabellinus to E. serotinus (28% 

42 hybrids in E. serotinus and 5% in E. isabellinus) in the contact zone. Although none of the 

43 bats studied tested positive for Lyssavirus RNA, the asymmetric hybridization supports the 

44 potential for the recently suggested interspecific transmission of EBLV-1 from E. isabellinus 

45 into E. serotinus.

46
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47 INTRODUCTION

48 Given rising threats from anthropogenic climate and land-use changes, it has never 

49 been more important to understand biodiversity (Leadley, 2010) and the extinction and 

50 speciation processes that drive its origin and maintenance (Hewitt, 2001). Cryptic speciation, 

51 the process of evolutionary divergence in the absence of morphological differentiation, has 

52 been described in a variety of organisms and ecosystems, and has important implications not 

53 only for biodiversity estimates but also for habitat conservation, wildlife management 

54 (Bickford et al., 2007), pest control and epidemiology (de Vienne et al., 2013; Doña et al., 

55 2017). Nevertheless, the genetic and ecological interactions between sibling species are not 

56 well understood (Struck et al., 2017), particularly when they are found in sympatry. A useful 

57 approach is the analysis and comparison of the recent phylogeographic history of the distinct 

58 lineages and inspection of their particular responses to environmental/climatic changes (e.g. 

59 glacial cycles) by analyzing how expansion/retraction events associated with these climatic 

60 changes shaped their genetic make-up (Carstens & Richards, 2007; Richards, Carstens, & 

61 Lacey Knowles, 2007). On the other hand, hybridization (defined as the admixture of 

62 evolutionary distinct lineages) is also a fundamental evolutionary process, commonly 

63 described in plants and animals, which is important in generating biodiversity (e.g. speciation) 

64 and its conservation (Mallet, 2005).  The exchange of genetic material along secondary 

65 contact zones particularly during lineage expansions is well documented and often results in 

66 increased genetic diversity and adaptability of the new gene pools (Barton & Hewitt, 1985). 

67 This contact of formerly isolated gene pools can bring about genomic introgression (Currat et 

68 al. 2008) or hybrid speciation (Canestrelli et al., 2016; Mallet, 2007), both recognized as 

69 major evolutionary drivers (reviewed in Abbott et al. 2013).

70 Since cryptic speciation and hybridization contribute substantially to the origin and 

71 spatial distribution of biodiversity, the ecological and evolutionary consequences of these 
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72 processes have been widely addressed (Battey & Klicka, 2017; Martinsson & Erséus, 2017; 

73 Seehausen, Takimoto, Roy, & Jokela, 2008; Soltis & Soltis, 2009). However, their interaction 

74 (hybridization between cryptic species) has received little attention. We can expect that both 

75 processes are correlated, and that hybridization is more successful between cryptic sibling 

76 species (genetically distinct but morphologically identical species) due to a higher genetic 

77 compatibility between closely related lineages, as has been found for some birds (Mallet, 

78 2005) and plants (Maguilla & Escudero, 2016) under natural conditions. Successful 

79 hybridization between differentiated lineages is also expected to be enhanced when these 

80 cryptic lineages share similar ecological requirements and sympatric (or parapatric) 

81 distributions.

82  The application of molecular techniques to species identification and hybridization 

83 studies has greatly contributed to understanding these biological processes (Allendorf et al., 

84 2001; Frankel, 1974; Fitzpatrick et al., 2012). In fact, the molecular review of traditional 

85 taxonomy has recognized often distinct evolutionary lineages within morphologically 

86 identical entities (i.e. cryptic species) unveiling important hidden diversity (Pfenninger & 

87 Schwenk, 2007). Codominant markers such as microsatellites are useful for detecting hybrids 

88 (e.g. Randi 2008; Fitzpatrick 2012), allowing the identification of groups and individual 

89 assignments through clustering algorithms (Bohling, Adams, & Waits, 2013; Vähä & 

90 Primmer, 2006). Multi-marker approaches (for example, those combing microsatellites with 

91 mitochondrial DNA [mtDNA] sequences) in particular,  provide powerful tools to address 

92 phylogeographic questions and to reconstruct intra- and inter-specific differentiation 

93 processes (Dool et al., 2013; Mallet, 2005; Mallet, Besansky, & Hahn, 2016; Mitchell, 

94 Muehlbauer, & Freedberg, 2016). In fact, the distinct genetic information provided by each 

95 marker, together with the recent application of Approximate Bayesian Computation (ABC) 

96 approaches (Beaumont, Zhang, & Balding, 2002) to statistically compare alternative 
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97 evolutionary history scenarios,  are improving our understanding of the evolutionary 

98 processes behind the origin and geographical patterns of present biodiversity.

99 Bats are a particularly suitable group for studying cryptic speciation, hybridization and 

100 their interactions due to their high proportion of cryptic species and their rich and complex 

101 social and interspecific relationships (Altringham, 2011). Molecular studies have unveiled an 

102 unexpectedly high proportion of cryptic diversity within the group, and the majority of the 

103 191 new bat species recognized from 1992 (Koopman, 1993) to 2005 (Simmons, 2005) were 

104 described within already known morphological complexes. In the Iberian Peninsula (hereafter 

105 Iberia), new cryptic lineages are found in up to 20% of the traditional morphologically-

106 defined species (Ibáñez, García-Mudarra, Ruedi, Stadelmann, & Juste, 2006). On the other 

107 hand, hybridization, and particularly mtDNA introgression, has been reported in bats across 

108 families and habitats worldwide [e.g. Rhinolophus (X. G. Mao, Zhu, Zhang, & Rossiter, 

109 2010); Myotis (Berthier, Excoffier, & Ruedi, 2006); Eptesicus (Artyushin et al. 2009);  

110 Uroderma (Hoffmann et al. 2003);  Epomophorus (Nesi et al. 2011)]. The widespread mating 

111 behaviour of swarming, which involves the gathering of multi-species in a single site to breed, 

112 may facilitate  -at least in some cases- this interspecific genetic exchange (Bogdanowicz et al. 

113 2012).

114 In Iberia, the most divergent lineages were found within the serotine bat (Ibáñez et al., 

115 2006). One lineage corresponded to Eptesicus serotinus (Schreber, 1774), a species common 

116 across Europe (C Moussy et al., 2015) and occupying the Northern half of Iberia, and another 

117 to E. isabellinus (Temminck, 1840), distributed along the southern half of Iberia and Northern 

118 Africa. A molecular revision of the genus Eptesicus confirmed the species status of the latter 

119 lineage (Javier Juste, Benda, Garcia-Mudarra, & Ibáñez, 2013). Both species show different 

120 environmental preferences with a narrow and overlapping zone in central Iberia (Santos et al., 

121 2014), which is the only area in which both species are in contact. This contact zone is acting 
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122 as both the northernmost limit of the distribution for E. isabellinus and the southernmost limit 

123 of the distribution of the E. serotinus. Both species can only be distinguished morphologically 

124 by putative differences in their fur brown color (being generally darker in E. serotinus)  and 

125 show wide overlap in all measurements (Juste et al., 2017). This bat complex is also 

126 considered the main natural reservoir of the European Bat Lyssavirus type-1 (EBLV-1), 

127 endemic to Europe and an important vector of rabies in humans and other mammals (P. 

128 Mingo-Casas et al., 2017). Eptesicus bats account for more than the 95% of the rabid bats 

129 detected in Europe. Population structure of EBLV-1 is mostly driven by geographical factors, 

130 but each of the two Eptesicus bats seems to host distinct lineages of EBLV-1 in Iberia (Sonia 

131 Vázquez-Morón, Juste, Ibáñez, Berciano, & Echevarría, 2011). The presence of a contact 

132 zone raises the possibility of viral exchanges with possible epidemiologic implications. 

133 In this study, we sampled allopatric and sympatric colonies of the bats E. serotinus and 

134 E. isabellinus across Iberia, focusing on the contact zone of these sibling species. We aimed 

135 to i) reconstruct and compare the recent evolutionary histories of the two species, ii) assess 

136 the biological interactions between them, and iii) determine potential patterns of EBLV-1 

137 transmission. We specifically tested the hypothesis of interspecific gene flow between these 

138 two cryptic bat species based on the combined information from mtDNA and nuclear 

139 microsatellite markers.

140 MATERIAL AND METHODS

141 Sampling design

142 We searched for Eptesicus bat colonies along the North-South gradient across Spain 

143 during spring (the reproductive season) from 1998 to 2013, mainly through inspecting 

144 potential refuges at dawn. Once the colony was identified, bats were mist-netted in one night 

145 and 2 mm-diameter wing membrane biopsies were collected according to Worthington-
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146 Wilmer & Barratt (1996) together with oropharyngeal swabs from each bat before they were 

147 released shortly after capture. Tissue samples were kept in 96% ethanol at -20ºC until 

148 processed in the lab and swabs stored in an RNA preservation lysis buffer (Casas, Powell, 

149 Klapper, & Cleator, 1995) for later virus checking. 

150 A total of 347 Eptesicus bats were captured and sampled from 19 breeding colonies 

151 across Iberia. Of these, 107 individuals from six maternity colonies were identified (based on 

152 their dark brown fur) in the field as presumably E. serotinus; two colonies (PCR and CTJ) 

153 were located in the contact zone, and the remaining four (CHA, TUD, CAN and UGA) were 

154 found throughout the northern non-overlapping area. All were stable maternity colonies with 

155 the exception of TUD, which was comprised of adult males only. The remaining 240 bats 

156 were identified as E. isabellinus, belonging to five breeding colonies within the contact zone 

157 (JAR, GAR, COR, SER and TOR) and eight colonies located in the allopatric area in 

158 Southern Iberia (AZN, ORG, ALC, HOR, BOQ, POS, USO and TRJ) (Figure 1, Tables 1 and 

159 2). The taxonomic identification based on morphology was subsequently confirmed 

160 genetically using the numerous molecular diagnostic characters, particularly in the mtDNA, 

161 found between both lineages (Juste et al., 2013). 

162 Prior to DNA extraction, the tissue was digested with proteinase K and total DNA was 

163 extracted following a standard phenol/chloroform protocol (Sambrook, Fritsch, Maniatis, 

164 Harbor, & Slatkin, 1989).  The colonies were considered sympatric if a colony of the sibling 

165 species was found within 50 km distance, given that both species are sedentary (Dietz, Nill, & 

166 Helversen, 2009). 

167 Mitochondrial DNA analysis

168 A section of the hyper-variable II region (HVII) of the mitochondrial control region 

169 (CR) was amplified in 107 E. serotinus and 240 E. isabellinus using the primers CSBC_F 
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170 (Wilkinson & Chapman, 1991) and H607_R (Wilmer, Moritz, Hall, & Toop, 1994) annealing 

171 in the conserved box C and the tRNAPHE gene, respectively.  See Supporting Information 

172 Table S1 for PCR conditions and primers. DNA sequences are uploaded to GenBank 

173 (accession numbers MH443793-MH444139).

174 Phylogenetic relationships between haplotypes were reconstructed with PAUP* 

175 4.0b10 (Swofford et al., 2001) using the Maximum Parsimony criterion (MP). Gaps were 

176 treated as "missing" and bootstrap support for the nodes was obtained after 2000 iterations. 

177 Mitochondrial DNA diversity was described based on the number of segregating sites (S), 

178 number of haplotypes (h), haplotype diversity (Hd), nucleotide diversity () and average 

179 number of nucleotide differences (k). All descriptors were estimated per species and colony 

180 using the software DnaSP 5.10 (Librado & Rozas, 2009). To estimate genetic differentiation 

181 between populations we used Φst (Holsinger & Weir, 2009) calculated in ARLEQUIN 

182 v.3.5.1.2 (Excoffier & Lischer, 2010), as the analogue to Fst for microsatellites. Due to 

183 differences in the effective population sizes between mitochondrial (HVII) and nuclear 

184 (microsatellites) markers, we recalculated ΦST based on Crochet (2000) (ΦST’) to compare it 

185 with FST-values (see below). Pairwise ΦST distances estimated between colonies of both 

186 species were analyzed to evaluate the relative importance of isolation by distance (IBD). A 

187 Mantel test was performed through the Isolation by Distance Web Service 

188 (http://ibdws.sdsu.edu/~ibdws/) (Jensen, Bohonak, & Kelley, 2005) using the log-transformed 

189 geographic distances between colonies obtained from GeoDataSource 

190 (http://www.geodatasource.com/distance-calculator). 

191 For each species, three possible grouping designs of the distribution of genetic 

192 variability were evaluated in a hierarchical molecular analysis of variance (AMOVA) (L 

193 Excoffier, Smouse, & Quattro, 1992) implemented in ARLEQUIN v.3.5.1.2 (LAURENT 

194 Excoffier & Lischer, 2010). We compared the following hypotheses: 1) no spatial genetic 
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195 variation throughout the whole species range; 2) the genetic variability is mainly divided into 

196 colonies in allopatry and sympatry; and 3) the genetic variability of the species is divided into 

197 four groups based on geographic criteria (see below).  A median-joining network of 

198 haplotypes was constructed for each species using Network 4.6.1.2 (Bandelt, Forster, & Röhl, 

199 1999).  The resulting networks were simplified by cutting superfluous median vectors and 

200 pruning unnecessary links for E. isabellinus with the MP option of the software.

201 Microsatellite genotyping and data analysis

202 Individuals were genotyped using 12 microsatellites originally designed for the bats: 

203 Plecotus auritus (PAUR05, Burland et al. 1998), Myotis myotis (D15, Castella & Ruedi 2000; 

204 NN8, Petri et al. 1997), Myotis bechsteinii (B22; Kerth et al. 2002), Eptesicus fuscus (EF1, 

205 EF14, EF15, EF20, EF4, EF6, Nyctalus noctula (P213), and Thyroptera tricolor (TT20, 

206 Vonhof et al. 2001). All  indirectly labeled using a M13 extension (Schuelke, 2000). See 

207 Supporting Information Table S1 for PCR conditions. Microsatellites were selected to avoid 

208 linkage disequilibrium among loci, using GENEPOP on the web (Rousset, 2008), and null 

209 alleles by using the EM algorithm implemented in FREENA (Chapuis & Estoup, 2007). 

210 Microsatellite datasets are available through the Mendeley data depository (DOI: 

211 http://dx.doi.org/10.17632/tpxc5dfs7v.1#file-b0e6021e-88c3-417d-b612-62c44dc06cc7). 

212 Hardy-Weinberg Equilibrium (HWE) was then tested per species, locus and population using 

213 Markov Chain Monte Carlo (MCMC) simulations in GENEPOP on the web (Rousset, 2008). 

214 Observed (HO) and (non-biased) expected (HE) heterozygosity were estimated using all loci 

215 per population with GENETIX 4.05.2 (Belkhir et al. 2004) and the inbreeding coefficient 

216 (FIS) using FSTAT v.2.9.3.2 (Goudet, 1995). Genetic structure was quantified with global FST 

217 and 95% confidence intervals and population pairwise FST values in GENETIX 4.05.2. 
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218 Individual-based assignment tests were run in STRUCTURE 2.3.2 (Falush, Stephens, 

219 & Pritchard, 2007) both to estimate the genetic structure within each species separately and to 

220 determine whether there was admixture between them. The algorithm implemented in 

221 STRUCTURE infers the number of genetically differentiated groups (K) and identifies pure 

222 and admixed individuals based on individual membership coefficients (q-coefficients). The 

223 selection of K was based on the second-order rate of change of log probability of the data 

224 between successive values of K (Evanno, Regnaut, & Goudet, 2005) as implemented in 

225 STRUCTURE HARVESTER  (Earl & von Holdt 2011). We applied this method using the 

226 admixture (independent allele frequency model) model and 10 replicates for each K (K 

227 ranging from 1 to 5) and ran simulations based on 100,000 MCMC iterations, collecting data 

228 every 100 steps. The first 10,000 steps were discarded as burn-in to estimate the convergence 

229 of the chains. CLUMPP v.1.1.2 (Jakobsson & Rosenberg, 2007) was used to obtain the 

230 averaged individual q-coefficients. We also used a Discriminant Analysis of Principal 

231 Components (DAPC) (Thibaut Jombart et al., 2010), a method used to find group subdivision 

232 that  maximizes differences between groups while minimizing variation within them. The 

233 DAPC were run using the Adegenet package in R (T. Jombart, 2008). We used the function 

234 find.clusters to run successive K-mean clustering with increasing number of clusters 

235 (max.n.clust=10) and applied the Bayesian Information Criterion (BIC) to select the model 

236 that best represents the number of groups.

237 Identifying hybrids

238 The program NEWHYBRIDS 1.1 beta (Anderson & Thompson, 2002) was used to 

239 identify potential hybrids. Runs were performed using Jeffrey’s prior and a burn-in period of 

240 20,000 repetitions followed by 100,000 repetitions of sampling. As suggested by the authors, 

241 we also ran an additional analysis with uniform priors to remove any possible bias due to low 

242 frequencies of alleles (Anderson & Thompson, 2002). The results of the STRUCTURE and 

Page 11 of 47 Journal of Zoological Systematics and Evolutionary Research



For Review Only

11

243 NEWHYBRIDS analyses were combined to define hybrids, following the criteria defined by 

244 Burgarella et al. (2009), to obtain the highest proportion of correctly identified hybrids. 

245 Accordingly, an individual was classified as hybrid only if satisfying two conditions: a) the 

246 sum of q-values was higher than 0.75 for all hybrid categories (F1 hybrids and backcrosses) in 

247 NEWHYBRIDS and b) it was assigned to one of the two Eptesicus species with a q-value 

248 lower than 0.90 in STRUCTURE.

249 Approximate Bayesian Computation model-based inference of evolutionary history

250 Alternative evolutionary scenarios for the two cryptic Eptesicus species were tested 

251 using the Approximate Bayesian Computation (ABC) approach implemented in DIYABC 

252 v2.1.0 (Cornuet et al., 2014). ABC analyses were carried out with the combined mtDNA and 

253 microsatellite datasets, and included all samples genotyped for the microsatellite markers. For 

254 this analysis, populations of each species were grouped into two broad geographical groups, 

255 one group at the Centre of the Iberian Peninsula, that included for each species the 

256 populations in the contact zone, and a second allopatric group at either the North (for E. 

257 serotinus) or the South (for E. isabellinus) of the Iberian Peninsula (see Figure 1). Separate 

258 analyses were run to determine for each species the time of population split [pre (Scenario 1.1 

259 and 3.1) or post (Scenario 1.2 and 3.2) Last Glacial Maximum (LGM)] and changes in 

260 demographic history (Scenario 2.1 and 4.1= null model of no change in population size since 

261 LGM; Scenario 2.2 and 4.2= post-LGM expansion of both populations; and Scenario 2.3 and 

262 4.3= post-LGM population expansion followed by more recent decline in sympatric 

263 population due to interspecific competition). Both species’ dataset were then combined to 

264 compare evolutionary histories and to inspect for gene flow between species, extent and 

265 direction (Scenario 5.1= gene flow from E. serotinus to E. isabellinus sympatric populations; 

266 Scenario 5.2= gene flow from E. isabellinus to E. serotinus sympatric populations; and 

267 Scenario 5.3= no gene flow between the species). We set pre-LGM split times at 104-106 
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268 generations ago, and post-LGM split times at 10-104, following the assumption that 

269 generation time in bats is likely to be around 2 years (e.g. Kerth et al., 2002; Flanders et al., 

270 2009). We fixed effective population sizes (Ne) in non-demographic analyses as equal across 

271 populations, ranging between 103 and 106. In the demographic history analysis Ne varied 

272 between populations and across time, depending on the scenario (see Supporting Information 

273 S2 for detailed information on scenarios and parameters).

274 Microsatellite loci were assumed to follow a Generalized Stepwise Mutation model 

275 (GSM) and mean mutation rate was bounded between 10-3 and 10-4 (Balloux & Lugon-

276 Moulin, 2002; Thibaut Jombart et al., 2010). The mutation rate of HVII was set at 10-7-10-6 

277 following the premise that the mutation rate of the CR is 10 fold faster than mtDNA 

278 genes/regions, like the Cytochrome b (see Nabholz et al. 2008 for mutation rates of 

279 Cytochrome b for mammals). Based on the results of jModelTest, the mutation model was set 

280 as Kimura-2-parameters. The percentage of invariant sites was adjusted to 30% for E. 

281 serotinus, while the shape of the gamma distribution was adjusted to 0.5 for E. isabellinus. 

282 The majority of available summary statistics were included in all runs, but statistics 

283 specifically relevant for demographic changes, Tajima’s D for the mtDNA and Mean Garza-

284 Williamson’s M for the microsatellite datasets, were only included in the demographic history 

285 analyses. A total of 106 simulations per scenario were tested in each analysis. The posterior 

286 probability of scenarios was estimated using a weighted polychotomous logistic regression. 

287 We checked model performance and empirically evaluated the power of the model to 

288 discriminate among scenarios and to determine confidence in scenario choice.

289 Lyssavirus testing

290 To inspect bats for Lyssavirus infection, oropharyngeal swab were collected from all 

291 captured specimens and deposited in a buffer designed for viral RNA preservation and cold 
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292 stored until processing. In the lab, Lyssavirus RNA was searched for by a nested reverse 

293 transcription PCR targeting 260 bp of the viral nucleo-protein gene using published primers, 

294 methodology and conditions (S. Vázquez-Morón, Avellón, & Echevarría, 2006). A positive 

295 control was run alongside samples to probe the sensitivity of the method and discard false 

296 negatives.

297 All sampling procedures were approved by the Ethical committee of the EBD- CSIC.

298 RESULTS

299 Mitochondrial genetic diversity and structure

300 The HVII fragment of the CR selected and amplified in all samples was the sequence 

301 just before the series of repeats that was 282 bp long in E. serotinus and 274 bp in E. 

302 isabellinus. Sequences were trimmed to the shortest fragment, resulting in an alignment of 

303 277 bp in analyses involving the two species plus outgroup.  GenBank accession numbers: 

304 MH443793 to MH444139 (all-sequences alignment available in Supporting Information S3). 

305 The morphology-based identification was confirmed genetically by the tree topology obtained 

306 that showed all samples divided into two groups corresponding to the two species of bats 

307 (Supporting Information Figure S4). A total of 17 and 24 haplotypes were identified in the 

308 HVII fragment in E. serotinus and E. isabellinus, respectively. In both species, genetic 

309 diversity varied substantially among colonies regardless of their geographic location, their 

310 proximity to the edge of the distributional range, or if the colony was in contact or not with 

311 the other species (Figure 2, Table 2, Supporting Information Table S5).  Overall values of 

312 genetic diversity were similar in both species. However, two colonies of E. isabellinus (AZN 

313 and HOR) were monomorphic with a unique haplotype shared by all their individuals (Figure 

314 2, Table 2, Supporting Information Table S5). 
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315 Genetic differentiation values (ΦST) were relatively high for the two species, but 

316 slightly lower for E. serotinus (average ΦST=0.43 / ΦST’ = 0.16) than for E. isabellinus 

317 (average ΦST=0.64 / ΦST’ = 0.31). Genetic differentiation between colony pairs was overall 

318 high and greater than 0.100 in all E. serotinus pairwise comparisons (Supporting Information 

319 Table S6). The lowest value of genetic differentiation was found between pairwise 

320 comparisons of E. isabellinus colonies: AZN-HOR (ΦST=0.000) and SER-USO (ΦST=0.029). 

321 Mantel’s tests showed that IBD was not significant in either E. serotinus (Z = 16.0292, r = 

322 0.0379, p = 0.57) or E. isabellinus (Z = 94.7963, r = 0.5255 p = 0.99). The decomposition of 

323 the variation through the AMOVA analyses revealed that over half of the variation was found 

324 ‘within populations’ for E. serotinus, and under all scenarios the ‘between populations’ 

325 component explained less than 7% of the total variability found in the species (Supporting 

326 Information Table S7). For E. isabellinus, instead, the ‘within populations’ variation 

327 component was much lower (< 25%), and the ‘between groups’ component instead, was 

328 relatively important for all designs (> 25%). In summary, the AMOVAs indicated that genetic 

329 variability is more geographically structured in this species (Supporting Information Table 

330 S7). This conclusion was also supported by the haplotype networks (Figure 2). The network 

331 of E. serotinus showed no structure between groups of colonies whereas the haplotypes of E. 

332 isabellinus appeared in two geographically separate groups (East and North of Spain). These 

333 groups were connected by the most frequently sampled haplotype that shows a star-like 

334 topology.

335 Nuclear genetic diversity and structure

336 A total of 77 E. serotinus and 231 E. isabellinus were genotyped for the 12 selected 

337 microsatellites. Loci EF6 and EF15 were subsequently removed because they showed high 

338 frequency (>0.05) of null alleles in 10 and 16 of the 19 colonies, respectively. There was no 

339 evidence of linkage disequilibrium among the remaining 10 microsatellite loci (Table 2, 
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340 Supporting Information Table S8). Only one colony of E. serotinus (CTJ) and the colonies 

341 JAR, SER and USO of E. isabellinus showed significant deviations from HWE (Table 2, 

342 Supporting Information Table S8). All colonies had lower genetic diversity than expected 

343 under HWE, as also reflected in their positive FIS indexes, with the exception of TRJ. The 

344 overall significant genetic structure (FST= 0.132; 95% CI: 0.083-0.203) was caused by the 

345 pairwise comparisons between E. isabellinus and E. serotinus (mean: 0.281; min: 0.202, 

346 max= 0.367), whereas intraspecific pairwise comparisons between colonies showed quite 

347 shallow genetic structure in both species (E. serotinus: overall FST= 0.047, 95% CI= 0.027- 

348 0.069; E. isabellinus: overall FST= 0.011, 95% CI= 0.003 - 0.016). The multi-species Bayesian 

349 analysis of population genetic structure clearly differentiated between E. isabellinus and E. 

350 serotinus and divided all genotyped individuals into two clusters (K=2) in agreement with the 

351 taxonomic distinction of two species (Figure 3). When STRUCTURE was run for each 

352 species separately, E. isabellinus did not show any intraspecific genetic structure (K=1), 

353 whereas E. serotinus individuals were divided into two clusters (K=2) and individuals from 

354 the CTJ, PCR and TUD colonies were mostly admixed (Figure 3B). A strong interspecific 

355 genetic structure was also observed with DAPC (Figure 3C) differentiating E. serotinus and 

356 E. isabellinus. 

357 Results from NEWHYBRIDS and STRUCTURE identified hybrid individuals in both 

358 species, though the frequency was clearly uneven (28% of E. serotinus versus 5% of E. 

359 isabellinus bats). All hybrids identified according to the most restricted criteria were found in 

360 the contact zone. The five hybrid individuals in E. isabellinus were found in three out of the 

361 five colonies that were sampled in the contact zone (BOQ: n= 3, COR: n=1 and GAR: n=1, 

362 15.79%, 5.26%, and 7.14% of the sampled individuals in each colony respectively). On the 

363 other hand, the proportion of hybrids was remarkably high in the only two colonies of E. 

364 serotinus sampled in the zone of sympatry, CTJ (n=7 out of 19, 36.84%) and PCR (n=2 out of 
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365 9, 15.38%), while no hybrids were found in any of the allopatric colonies. A detailed report of 

366 the proportion of hybrids within each colony is found in Supporting Information Table S9.

367 ABC model-based inference placed both species’ population split times as post-LGM 

368 and the older population as the allopatric population (E. isabellinus: posterior probability 

369 >0.99, error rates<0.0001; E. serotinus: posterior probability >0.99, error rates<0.0001). In 

370 the case of E. isabellinus, the central, sympatric population was colonized from the southern 

371 populations at approximately 6,250 years ago (ya) (75% Credible Intervals: 2,000-9,800 ya), 

372 while the central E. serotinus population was colonized from the northern population at 

373 around 2,600 ya (75% CI: 1,400-5,100 ya). The combined model indicates that contact 

374 between the sympatric central populations of the two species has allowed the hybridization 

375 through gene flow from E. isabellinus to E. serotinus (posterior probability=0.870), with rates 

376 of admixture estimated at 0.252 of the E. serotinus population (75% CI: 0.193-0.325; Figure 

377 4). Interestingly, this is a very similar value to the hybridization rate found in the 

378 NEWHYBRIDS analysis. Demographic history models indicate that both populations of E. 

379 isabellinus have expanded more than 100 fold post-LGM, while in the case of E. serotinus the 

380 allopatric (northern) population expanded by just under 10 fold and the sympatric (central) 

381 population by nearly 100 fold. None of the populations have subsequently decreased in size 

382 following contact with their cryptic sister species (E. serotinus: posterior probability=0.722, 

383 error rates=0.118; E. isabellinus: posterior probability=0.950, error rates=0.086; see 

384 Supporting Information S2 for DIYABC outputs).

385 Finally, no positive results were found in the PCR screening for EBLV virus in the 

386 saliva swabs of any of the sampled bats.

387 DISCUSSION
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388 Cryptic speciation and hybridization are evolutionary processes that have contributed 

389 substantially to the origin and distribution of biodiversity. Nevertheless, the interaction 

390 between these two processes has been largely overlooked, in particularly in mammals, even 

391 though hybridization between cryptic species is expected to be relatively high (Mallet, 2005). 

392 Using genetic markers (mitochondrial and nuclear) with different modes of inheritance we 

393 show differences in the recent evolutionary histories of two cryptic bat species (E. serotinus 

394 and E. isabellinus) in Iberia, and provide strong evidence for asymmetric hybridization 

395 between sympatric populations.

396 Overall mitochondrial genetic diversity values were similar in both species. These 

397 values were close to those reported for E. serotinus from other parts of Europe (C Moussy et 

398 al., 2015) and slightly higher than those of the American congener, E. fuscus (Neubaum, 

399 Douglas, Douglas, & O’Shea, 2007). Still, genetic diversity varied substantially between 

400 colonies and two allopatric colonies of E. isabellinus were completely monomorphic at the 

401 mtDNA level (AZN and HOR). The diversity values showed no differences between colonies 

402 in the contact zone (which also represents the North and South edge-of-range of the two 

403 species) and the more central populations (Figure 2), contrary to the expected pattern of 

404 reduced diversity in peripheral populations (Bridle & Vines, 2007). In fact, colonies of E. 

405 isabellinus near the distribution limit were neither scarcer nor smaller than colonies at the 

406 center of the species distribution. The lack of pattern indicates that the species’ edge-of-range 

407 may be recent and that diversity values may result instead from prevailing environmental 

408 conditions or the evolutionary history of each colony. For instance, the two monomorphic 

409 colonies were located in recently built concrete bridges and their lack of diversity probably 

410 reflects random fixation of alleles during recent colony formation due to founder effect. E. 

411 serotinus, on the other hand, seemed to be rarer in the contact zone, and despite intense search 

412 efforts, only two maternity colonies (PCR and CTJ) and a few vagrant males were found in 
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413 the area. Nevertheless, these two colonies at the edge of the species range did not show lower 

414 values of genetic diversity.  Interestingly, the social structure of the colony does not seem to 

415 determine colony diversity either because the only colony of bachelor males sampled (TUD) 

416 showed similar values as the other maternity colonies. 

417 Mitochondrial and nuclear genetic differentiations confirm the species status of E. 

418 serotinus and E. isabellinus (Javier Juste et al., 2013), although genetic structure varied 

419 considerably between markers, as well as between species. In fact, whereas most of the 

420 variation in E. serotinus was found within colonies, E. isabellinus showed twice as much 

421 differentiation among colonies and this variation component was geographically structured 

422 with a distinction between a group of Southern (Andalusian) colonies and a group of colonies 

423 along the Northern swath in the Central Plateau that are separated by the Sierra Morena 

424 mountains (Figure 2). This pattern matches that found in bats by Juste et al. (2009), as well as 

425 in plants (Nieto Feliner, 2014) and amphibians (Martínez-Solano, 2004). Levels of 

426 differentiation between colonies are similar to levels found in other continental colonies of E. 

427 serotinus (C Moussy et al., 2015), and are typical of sedentary or short-distance migrating 

428 bats (Caroline Moussy et al., 2013). Differentiation among colonies was mostly high in all 

429 mtDNA pairwise comparisons, and can be associated with the strong roost fidelity of females 

430 (J Juste et al., 2009). This mtDNA structure contrasts with the results of the microsatellite 

431 dataset that, apart from supporting the specific distinction of the two bats, show a weak 

432 genetic structure, indicating male-mediated gene flow between colonies. Clustering analyses 

433 did not reveal any pattern in either of the two bats, likely due to the overall weak genetic 

434 structure (Latch, Dharmarajan, Glaubitz, & Rhodes, 2006). The differences between mtDNA 

435 and nDNA markers stress the different roles played by females and males in relation to the 

436 genetic structuring of the populations. Dispersing males are responsible for gene flow 

437 between populations, while the philopatric behavior of females results in strong genetic 

Page 19 of 47 Journal of Zoological Systematics and Evolutionary Research



For Review Only

19

438 structure at the mtDNA level. These sex-biased differences are considered typical for most bat 

439 species (Altringham, 2011), and have been described in several species, including 

440 Rhinolophus ferrumequinum (Flanders et al., 2009), Myotis myotis (Ruedi et al., 2008), 

441 Miniopterus schreibersii (Ramos Pereira, Salgueiro, Rodrigues, Coelho, & Palmeirim, 2009) 

442 and Myotis escalerai, in the Iberian Peninsula (Razgour et al. 2015). The colonies JAR, SER 

443 and USO of E. isabellinus and CTJ of E. serotinus were not in Hardy-Weinberg equilibrium, 

444 suggesting population sub-structuring or deviation from random mating. These colonies were 

445 all located at the edge of the distribution areas, which may explain the deficit of heterozygotes 

446 combined with a potential Wahlund effect due to possible sampling of different family groups 

447 within colonies (Hansen, Nielsen, & Mensberg, 1997). 

448 The best supported recent evolutionary history scenarios based on the ABC analysis 

449 using the joint mDNA and nDNA dataset suggest that both bats expanded in Iberia after the 

450 LGM from their respective refuges: E. serotinus expanded southwards and E. isabellinus 

451 northwards. According to the results, the refuge in the case of E. isabellinus was probably 

452 located in the southwestern corner of the Peninsula as suggested by Juste et al. (2009). There 

453 is no information on the refuge of E. serotinus, but the lack of genetic structure, even across 

454 Europe (Moussy et al., 2015, Troupin et al., 2017), suggests a rapid expansion of E. serotinus 

455 as new suitable habitats opened in Europe. In Iberia, ABC inference indicates a slightly older 

456 expansion for E. isabellinus, which would explain its relatively deeper geographic structure 

457 based on the mtDNA marker. Interestingly, neither of the two bats seems to have experienced 

458 population declines either during the expansion or after the contact.  The expansions could 

459 have been reciprocally limited by the presence of the other species due to competitive 

460 exclusion, eventually resulting in the present parapatric distribution along an East-West axis 

461 in the center of the Peninsula. Alternatively, the sharp environmental changes in the contact 

462 zone from the forested mountain habitats to more xeric open lands may have played a role in 
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463 defining the current distribution edges, given the important differences in the environmental 

464 optima of the two species according to their species distribution models (Santos et al., 2014). 

465 The contact zone between the two species seems to be much wider in Portugal (Rebelo, 

466 2013), where the transition between Atlantic and Mediterranean environments is smoother. 

467 To fully understand the current dynamics and to make reasonable predictions about shifts in 

468 the species’ limits, more information is needed on both patterns and processes occurring 

469 within and adjacent to the contact zone (Harrison, 1986).

470 Our empirical evidence revealed no mitochondrial introgression between the two 

471 species because all the colonies showed unambiguous haplotypes belonging to either one 

472 species or the other. Accordingly, colonies in the contact zone did not show higher mtDNA 

473 diversity, as would have been expected had they incorporated alien haplotypes. Interestingly, 

474 mitochondrial introgression with the co-generic E. nilssonii was detected in Western 

475 populations of E. serotinus (Artyushin et al., 2009) and probably associated to its post-glacial 

476 expansion. However, the nuclear markers identified in our study an ongoing male-mediated 

477 asymmetric hybridization from E. isabellinus to E. serotinus (28% in E. serotinus and 5% in 

478 E. isabellinus) in the contact zone. Asymmetric hybridization has been also recently reported 

479 in the species complex of Myotis myotis and M. byithii, two bat species roosting in mixed 

480 maternity colonies (Afonso, Goydadin, Giraudoux, & Farny, 2017). Asymmetry in the genetic 

481 exchange is relatively common (Barton & Hewitt, 1985) and can be promoted by different life 

482 history traits (e.g. sex differences in body size, mating strategies, dispersal behavior etc.). In 

483 this case, however, the two cryptic bats are highly similar in their morphology, echolocation 

484 characteristics and ecology (J. Juste et al., 2017). Alternatively, asymmetric introgression 

485 could arise from post-mating barriers, such as sex-biased sterility and fitness differences 

486 (Barton & Hewitt, 1985), or could simply be the result of differences in abundance, whereby 

487 the rarer species is more likely to mate with the other species simply because hetero-specifics 
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488 are more common in the area. Hybridization also enables the establishment of new 

489 populations, as species shift their distribution range and overlap with competing species 

490 through the acquisition of local genetic adaptations (Hovick and Whitney, 2014). The 

491 negative effects of species competition may be ameliorated by the combined effects of 

492 demographic mechanisms (e.g. colonization/extinction of bat colonies) and severe Allee 

493 effects without implying any new adaptive change in hybrids (Mesgaran et al., 2016).  The 

494 proportion of hybrids found in one of the colonies of E. serotinus (PCR) is almost double the 

495 number of hybrids found in the other colony (CTJ). These differences could indicate clinal 

496 variation, though more colonies need to be sampled to validate this hypothesis. The presence 

497 of hybrids only in the narrow contact zone points to a recent genetic exchange rather than past 

498 overlap in species distributions as suggested for other bats (Mao et al., 2010). 

499 Hybridization is often related to particular social behaviors. In the case of the bat 

500 Myotis alcathoe it has been linked to the particular swarming behavior of bats that gather to 

501 mate in multi-specific ensembles in places like cave entrances (Bogdanowicz et al., 2012). 

502 For other bats, like the Asian horseshoe bats, hybrids were associated with opportunistic 

503 winter mating with torpid females (Mao et al., 2010). For the European serotine, as for the 

504 American E. fuscus, it is still unknown when mating takes place (Maarten J. Vonhof, 

505 Strobeck, & Fenton, 2008). Detailed data on mating behavior are needed to fully understand 

506 the possible relationship between hybridization and specific aspects of their social life. 

507 EBLV-1 is the zoonotic rabies virus most frequently detected in bats in Europe, and 

508 both Eptesicus species are considered its main reservoirs (Sonia Vázquez-Morón et al., 2008). 

509 Lyssavirus-positive bats were not found in this study, in line with previous results for 

510 Eptesicus isabellinus showing viral RNA presence in only 2.8% of more than a thousand bats 

511 tested (Sonia Vázquez-Morón et al., 2008). E. serotinus and E. isabellinus host distinct and 

512 characteristic EBLV1 virus strains, each with a different phylogenetic history (Sonia 
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513 Vázquez-Morón et al., 2011).  A recent study has reported the first detection of an EBLV-1 of 

514 the strain considered typical of E. isabellinus in an E. serotinus bat from North-Eastern Spain 

515 (Patricia Mingo-Casas et al., 2018). The sequence of this virus is close to a known southern 

516 sequence of the virus, which suggests a recent transmission from E. isabellinus to E. 

517 serotinus, in agreement with the direction of the asymmetrical hybridization described in our 

518 study. The process of viral transmission across bat species is not well understood, but most 

519 probably requires close contact between the bats (Echevarría, Avellón, Juste, Vera, & Ibáñez, 

520 2001; Sonia Vázquez-Morón et al., 2008). Whether the transmission of the virus strain was in 

521 fact promoted by the asymmetric hybridization and whether this host exchange in the EBLV-1 

522 strains is widespread are questions in need of further investigation.

523 Conclusions

524 The herein described hybridization between E. serotinus and E. isabellinus is a new 

525 example to add to the surprisingly short list of hybridizing bat species (reviewed in 

526 Bogdanowicz et al., 2012). Nevertheless, the extent of hybridization reported in the literature 

527 might be an underestimation because, like in our case study, hybrids are frequently impossible 

528 to distinguish morphologically from the parental species (Mallet, 2005). Interestingly, out of 

529 the less than twenty hybridization events (including introgression) reported for bats, the 

530 majority involves pairs of cryptic but not necessarily sister species, from the large Pteropus 

531 fruit bats (Webb & Tidemann, 1995) to the tiny European Pipistrellus (Sztencel-Jabłonka & 

532 Bogdanowicz, 2012).  This pattern is pointing to an association of hybridization with other 

533 evolutionary processes linked to cryptic species, such as parallelism or stasis (Struck et al., 

534 2017), although with exceptions such as the cryptic species complex of European Plecotus 

535 that maintain totally isolated their genetic pools even in sympatry (Andriollo et al., 2018). 

536 This particular case could result from the high level of differentiation between these lineages 

537 (J. Juste et al., 2004), since it is expected that recently diverged taxa have less chance of 
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538 incompatibilities or genetic breakdown when their genomes are assembled together, making a 

539 successful hybridization between them probably more attainable, especially in secondary 

540 contact zones. Nevertheless, the relationships between hybridization and level of 

541 differentiation still need more studies to be properly understood.

542
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558 RESUMEN

559 Los procesos de especiación críptica e hibridación son determinantes para el origen y 

560 mantenimiento de la biodiversidad, así como para nuestra capacidad de conocerla y estimarla. 

561 En este trabajo estudiamos colonias en alopatría y simpatría de dos especies crípticas  de 

562 murciélagos (Eptesicus serotinus y E. isabellinus) con distribución parapátrica en la península 

563 ibérica. Se sabe que estas especies suponen el principal reservorio para los virus de la rabia 

564 más comunes en murciélagos en Europa: Lyssavirus tipo 1 de los murciélagos europeos 

565 (EBLV-1). Utilizamos ADN mitocondrial y microsatélites para confirmar la taxonomía de 

566 ambas especies y para mostrar que  en E. isabellinus existe una mayor estructura genética 

567 correlacionada con la distribución geográfica que la encontrada en E. serotinus. Datamos una 

568 expansión de rango rápida en ambas especies tras el ultimo máximo glacial hasta que 

569 alcanzaron su actual área de distribución, utilizando para ello métodos basados en la 

570 computación de aproximación bayesiana (ABC). Estos análisis también confirman diferencias 

571 interespecíficas en la diversidad genética y estructura, lo que sugiere una expansión hacia el 

572 Norte de E. Isabellinus anterior a la de la especie hermana. No encontramos introgresión del 

573 ADN mitocondrial entre especies, aunque el análisis de los microsatélites identificaron una 

574 hibridación asimétrica actual de E. isabellinus hacia E. serotinus en la zona de contacto (28% 

575 de híbridos en E. serotinus y 5% en E. isabellinus). A pesar de que ninguno de los 

576 especímenes analizados portaban ARN de Lyssavirus, la hibridación asimétrica detectada en 

577 este estudio justifica el potencial de transmisión del EBLV-1 de E. isabellinus hacia E. 

578 serotinus.

579
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923 Titles and legends to figures.

924 Figure 1.  Sampled colonies of Eptesicus serotinus (triangles and red) and E. isabellinus 

925 (circles and blue) in the Iberian Peninsula. See Table 1 for acronyms. The contact zone is 

926 marked with a shaded ellipse and the colonies within it have light colors.

927 Figure 2.  Left: Histograms showing the distribution of mtDNA nucleotide diversity (π) by 

928 colonies for 1a) Eptesicus serotinus and 1b) E. isabellinus. Histograms of populations 

929 included in the contact zone are shown in light red (E. serotinus) and light blue (E. 

930 isabellinus), otherwise in full color. Right: Median-Joining network between HVII haplotypes 

931 of the two species of bats: 2a) Eptesicus serotinus and 2b) E. isabellinus. Circles are 

932 proportional to the number of individuals presenting each haplotype. Similarly, light red and 

933 light blue circles correspond to the contact zone.  The little red dots are reconstructed or 

934 missing haplotypes and each red bar in the connecting lines represent a change. Dashed lines 

935 in 2b) divide geographic regions.

936 Figure 3.  Population structure of Eptesicus serotinus and E. isabellinus in Spain. Bar plots 

937 showing the inferred group assignment of all bats sampled from E. serotinus and E. 

938 isabellinus based on the STRUCTURE analysis and grouped by colony for all individuals (A) 

939 and considering only E.serotinus individuals according to their mtDNA signature (B). 

940 Discriminant Analysis of Principal Components (DAPC) based on 10 microsatellites (C). The 

941 two main groups correspond to Eptesicus serotinus (right) and E. isabellinus (left).

942 Figure 4. Patterns of post-Last Glacial Maximum range expansion by Eptesicus serotinus 

943 (red triangles) and E. isabellinus (blue squares) in the Iberian Peninsula based on ABC 

944 inference. The allopatric populations of each species are marked with circles or polygons and 

945 the sympatric populations with ellipses. Direction of range expansion is marked with straight 
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946 arrows, indicating the median estimated time of expansion. Gene flow between species is 

947 marked with a curved arrow, indicating hybridization rates.

948
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972 TABLES
973 Table 1 - Colonies of Eptesicus serotinus and E. isabellinus sampled in this study. See Figure 
974 1 for the spatial layout of locations.
975

976 Species Type Code Locality (Province) Lat. (N) Long. 
977 (W)

978 E. serotinus Allopatry CAN O Caneiro (A Coruña) 43.6007 -8.0549

979 CHA Chaín (Pontevedra) 42.3517 -8.5180

980 TUD Tudela del Duero (Valladolid) 41.5843 -4.5811

981 UGA Ugao (Vizcaya) 43.1786 -2.9028

982 Contact Zone CTJ Casatejada (Cáceres) 39.9812 -5.7035

983 PCR Pozo del Rey (Cáceres) 40.0684 -5.4680

984

985 E. isabellinus Allopatry ALC Alcalá del Río (Sevilla) 37.5185 -5.9748

986 AZN Aznalcollar (Sevilla) 37.5340 -6.3017

987 ORG Órgiva (Granada) 36.8719 -3.4728

988 POS Posadas (Córdoba) 37.7968 -5.1052

989 TRJ Puente Trajano (Sevilla) 37.0326 -5.9272

990 HOR Horcajo de los Montes 39.2905 -4.5516

991 (Ciudad Real)

992 USO Puente Río Uso (Toledo) 39.7341 -5.0570

993 BOQ Boquerón (Ciudad Real) 39.4928 -4.5422

994 Contact  Zone COR Corrinche (Cáceres) 39.7754 -5.7137

995 GAR Garrovillas (Cáceres) 39.7543 -6.4375

996 JAR Jaraicejo (Cáceres) 39.7517 -5.8490

997 SER Serradilla (Cáceres) 39.7916 -6.1320

998 TOR Torrejón el Rubio (Cáceres) 39.8298 -6.0351

999

1000
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1001  Table 2 - Mitochondrial [number of haplotypes (h), haplotype diversity (Hd), nucleotide 

1002 diversity (π), number of polymorphic sites (S)] and nuclear diversity [observed (Ho) and 

1003 expected ( He)  heterozygosity] across all loci and by colony. 

1004

1005
Eptesicus serotinus

Mitochondrial Nuclear
Colony N h Hd π S N He Ho Overall Fis

CHA 19 8 0.795 0.008 12 11 0.4676 0.4128 0.3355 0.123
TUD 15 5 0.781 0.004 4 14 0.5439 0.4859 0.1676 0.111
PCR 19 4 0.45 0.007 12 13 0.6956 0.6352 0.9143 0.097
CTJ 20 3 0.647 0.007 5 19 0.6164 0.3355 0.0295 0.02
CAN 20 3 0.468 0.002 2 17 0.4092 0.4094 0.6164 0
UGA 14 2 0.363 0.001 1 3 0.53 0.5167 1 0.05

Total 107 17 0.894 0.008 16 77 0.628 0.57 0.5105 0.052
Eptesicus isabellinus

Mitochondrial Nuclear
Colony N h Hd π S N He Ho Overall Fis
JAR 17 5 0.735 0.006 6 16 0.7161 0.6397 0.0035 0.111
AZN 18 1 0 0 0 19 0.7012 0.6473 0.1547 0.084
ORG 24 3 0.598 0.005 4 24 0.6846 0.6367 0.1746 0.07
ALC 20 4 0.5 0.003 4 18 0.7038 0.6547 0.0705 0.071
GAR 14 2 0.264 0.003 3 14 0.7206 0.6892 0.7209 0.046
COR 19 2 0.456 0.008 5 19 0.695 0.6918 0.8417 0.005
HOR 20 1 0 0 0 20 0.6989 0.6887 0.1778 0
POS 11 6 0.727 0.006 6 5 0.6934 0.67 0.9682 0.036
USO 20 3 0.353 0.005 11 19 0.6711 0.6499 0.013 0.032
SER 22 4 0.571 0.003 3 22 0.6822 0.6082 0.036 0.111
BOQ 19 5 0.713 0.005 9 19 0.6883 0.681 0.0547 0.011
TOR 17 2 0.382 0.001 1 18 0.6874 0.6603 0.6647 0.041
TRJ 19 2 0.491 0.002 1 18 0.6886 0.6918 0.2941 -0.005
Total 240 24 0.840 0.013 27 231 0.70 0.66 0.3211 0.049
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Sampled colonies of Eptesicus serotinus (triangles and red) and E. isabellinus (circles and blue) in the 
Iberian Peninsula. See Table 1 for acronyms. The contact zone is marked with a shaded ellipse and the 

colonies within it have light colors. 
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Left: Histograms showing the distribution of mtDNA nucleotide diversity (π) by colonies for 1a) Eptesicus 
serotinus and 1b) E. isabellinus. Histograms of populations included in the contact zone are shown in light 

red (E. serotinus) and light blue (E. isabellinus), otherwise in full color. Right: Median-Joining network 
between HVII haplotypes of the two species of bats: 2a) Eptesicus serotinus and 2b) E. isabellinus. Circles 
are proportional to the number of individuals presenting each haplotype. Similarly, light red and light blue 

circles correspond to the contact zone. The little red dots are reconstructed or missing haplotypes and each 
red bar in the connecting lines represent a change. Dashed lines in 2b) divide geographic regions. 
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Population structure of Eptesicus serotinus and E. isabellinus in Spain. Bar plots showing the inferred group 
assignment of all bats sampled from E. serotinus and E. isabellinus based on the STRUCTURE analysis and 

grouped by colony for all individuals (A) and considering only E.serotinus individuals according to their 
mtDNA signature (B). Discriminant Analysis of Principal Components (DAPC) based on 10 microsatellites (C). 

The two main groups correspond to Eptesicus serotinus (right) and E. isabellinus (left). 
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Patterns of post-Last Glacial Maximum range expansion by Eptesicus serotinus (red triangles) and E. 
isabellinus (blue squares) in the Iberian Peninsula based on ABC inference. The allopatric populations of 

each species are marked with circles or polygons and the sympatric populations with ellipses. Direction of 
range expansion is marked with straight arrows, indicating the median estimated time of expansion. Gene 

flow between species is marked with a curved arrow, indicating hybridization rates. 
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