145 research outputs found

    Chromosome-wide identification of novel imprinted genes using microarrays and uniparental disomies

    Get PDF
    Genomic imprinting refers to a specialized form of epigenetic gene regulation whereby the expression of a given allele is dictated by parental origin. Defining the extent and distribution of imprinting across genomes will be crucial for understanding the roles played by imprinting in normal mammalian growth and development. Using mice carrying uniparental disomies or duplications, microarray screening and stringent bioinformatics, we have developed the first large-scale tissue-specific screen for imprinted gene detection. We quantify the stringency of our methodology and relate it to previous non-tissue-specific large-scale studies. We report the identification in mouse of four brain-specific novel paternally expressed transcripts and an additional three genes that show maternal expression in the placenta. The regions of conserved linkage in the human genome are associated with the Prader–Willi Syndrome (PWS) and Beckwith–Wiedemann Syndrome (BWS) where imprinting is known to be a contributing factor. We conclude that large-scale systematic analyses of this genre are necessary for the full impact of genomic imprinting on mammalian gene expression and phenotype to be elucidated

    Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels

    Get PDF
    In the metazoan replication timing program, clusters of replication origins located in different subchromosomal domains fire at different times during S phase. We have used Xenopus laevis egg extracts to drive an accelerated replication timing program in mammalian nuclei. Although replicative stress caused checkpoint-induced slowing of the timing program, inhibition of checkpoint kinases in an unperturbed S phase did not accelerate it. Lowering cyclin-dependent kinase (Cdk) activity slowed both replication rate and progression through the timing program, whereas raising Cdk activity increased them. Surprisingly, modest alteration of Cdk activity changed the amount of DNA synthesized during different stages of the timing program. This was associated with a change in the number of active replication factories, whereas the distribution of origins within active factories remained relatively normal. The ability of Cdks to differentially effect replication initiation, factory activation, and progression through the timing program provides new insights into the way that chromosomal DNA replication is organized during S phase

    A Series of Manganese(III) Salen Complexes as a Result of Team-Based Inquiry in a Transnational Education Programme.

    Get PDF
    The development of a team-based approach to research-led transnational practical chemistry teaching is described in which a team of five Chinese students on an articulated transnational degree programme, supported by a team of academic and technical staff, carried out a study examining the structural chemistry of a series of manganese(III) salen complexes. A series of four crystallographically characterized manganese(III) salen complexes with ancillary carboxylate ligands are reported here. The carboxylate coordination modes range from the bridging syn-anti μ2 -κO : κO' mode observed in the predominant cyclohexanoate and isobutyrate species, to a capping terminal monodentate mode for the adamantanoate species, and an unusual mixture of bridging and terminal coordination modes observed in a second minor phase of the cyclohexanoate species. The variation on extended structures based on the weakly interacting aliphatic backbones may provide a useful basis for further structural studies

    The Impact of Doctoral Study on University Lecturers’ Construction of Self within a changing Higher Education policy context

    Get PDF
    This paper explores the impact of lectures’ individual current doctoral study on their own and collective constructions of self in a changing Higher Education (HE) policy context. It focuses on how lecturers, drawn from a professional knowledge background, make sense of new institutional requirements for new lectures to have doctorates. The lecturers themselves, through ‘facilitated collaborative auto-ethnography’, generate the substantial data and analysis for this research. This study exposes the enormous pressure of the doctorate on their lives and reveals different ways in which they resist particular forms of language, affiliations and positioning within their institution. However, of particular significance in this study is their own agency and collective voice, through using their developing cultural tools of research to ‘be’ researchers, in and beyond their own doctoral studies, in order to understand their own changing identities within HE. The study therefore reveals complex, contradictory and unexpected responses to HE policy

    Biotransformation of artemisinin to a novel derivative via ring rearrangement by Aspergillus niger.

    Get PDF
    Artemisinin is a component part of current frontline medicines for the treatment of malaria. The aim of this study is to make analogues of artemisinin using microbial transformation and evaluate their in vitro antimalarial activity. A panel of microorganisms were screened for biotransformation of artemisinin (1). The biotransformation products were extracted, purified and isolated using silica gel column chromatography and semi-preparative HPLC. Spectroscopic methods including LC-HRMS, GC-MS, FT-IR, 1D and 2D NMR were used to elucidate the structure of the artemisinin metabolites.H-1 NMR spectroscopy was further used to study the time-course biotransformation. The antiplasmodial activity (IC50) of the biotransformation products of 1 against intraerythrocytic cultures of Plasmodium falciparum were determined using bioluminescence assays. A filamentous fungus Aspergillus niger CICC 2487 was found to possess the best efficiency to convert artemisinin (1) to a novel derivative, 4-methoxy-9,10-dimethyloctahydrofuro-(3,2-i)-isochromen-11(4H)-one (2) via ring rearrangement and further degradation, along with three known derivatives, compound (3), deoxyartemisinin (4) and 3-hydroxy-deoxyartemisinin (5). Kinetic study of the biotransformation of artemisinin indicated the formation of artemisinin G as a key intermediate which could be hydrolyzed and methylated to form the new compound 2. Our study shows that the anti-plasmodial potency of compounds 2, 3, 4 and 5 were ablated compared to 1, which attributed to the loss of the unique peroxide bridge in artemisinin (1). This is the first report of microbial degradation and ring rearrangement of artemisinin with subsequent hydrolysis and methoxylation by A.niger

    Comparative Analysis of DNA Replication Timing Reveals Conserved Large-Scale Chromosomal Architecture

    Get PDF
    Recent evidence suggests that the timing of DNA replication is coordinated across megabase-scale domains in metazoan genomes, yet the importance of this aspect of genome organization is unclear. Here we show that replication timing is remarkably conserved between human and mouse, uncovering large regions that may have been governed by similar replication dynamics since these species have diverged. This conservation is both tissue-specific and independent of the genomic G+C content conservation. Moreover, we show that time of replication is globally conserved despite numerous large-scale genome rearrangements. We systematically identify rearrangement fusion points and demonstrate that replication time can be locally diverged at these loci. Conversely, rearrangements are shown to be correlated with early replication and physical chromosomal proximity. These results suggest that large chromosomal domains of coordinated replication are shuffled by evolution while conserving the large-scale nuclear architecture of the genome

    Transcript- and tissue-specific imprinting of a tumour suppressor gene

    Get PDF
    The Bladder Cancer-Associated Protein gene (BLCAP; previously BC10) is a tumour suppressor that limits cell proliferation and stimulates apoptosis. BLCAP protein or message are downregulated or absent in a variety of human cancers. In mouse and human, the first intron of Blcap/BLCAP contains the distinct Neuronatin (Nnat/NNAT) gene. Nnat is an imprinted gene that is exclusively expressed from the paternally inherited allele. Previous studies found no evidence for imprinting of Blcap in mouse or human. Here we show that Blcap is imprinted in mouse and human brain, but not in other mouse tissues. Moreover, Blcap produces multiple distinct transcripts that exhibit reciprocal allele-specific expression in both mouse and human. We propose that the tissue-specific imprinting of Blcap is due to the particularly high transcriptional activity of Nnat in brain, as has been suggested previously for the similarly organized and imprinted murine Commd1/U2af1-rs1 locus. For Commd1/U2af1-rs1, we show that it too produces distinct transcript variants with reciprocal allele-specific expression. The imprinted expression of BLCAP and its interplay with NNAT at the transcriptional level may be relevant to human carcinogenesis

    "Dreaming in colour’: disabled higher education students’ perspectives on improving design practices that would enable them to benefit from their use of technologies"

    Get PDF
    The focus of this paper is the design of technology products and services for disabled students in higher education. It analyses the perspectives of disabled students studying in the US, the UK, Germany, Israel and Canada, regarding their experiences of using technologies to support their learning. The students shared how the functionality of the technologies supported them to study and enabled them to achieve their academic potential. Despite these positive outcomes, the students also reported difficulties associated with: i) the design of the technologies, ii) a lack of technology know-how and iii) a lack of social capital. When identifying potential solutions to these difficulties the disabled students imagined both preferable and possible futures where faculty, higher education institutions, researchers and technology companies are challenged to push the boundaries of their current design practices
    corecore