1,928 research outputs found
Recommended from our members
Nuclear structure research. Annual progress report
The most significant development this year has been the realization of a method for estimating EO transition strength in nuclei and the prediction that the de-excitation (draining) of superdeformed bands must take place, at least in some cases, by strong EO transitions. A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A significant effort has been devoted to HRIBF target development. This is a critical component of the HRIBF project. Exhaustive literature searches have been made for a variety of target materials with emphasis on thermodynamic properties. Vapor pressure measurements have been carried out. Experimental data sets for radioactive decays in the very neutron-deficient Pr-Eu and Ir-Tl regions have been under analysis. These decay schemes constitute parts of student Ph.D. theses. These studies are aimed at elucidating the onset of deformation in the Pr-Sm region and the characteristics of shape coexistence in the Ir-Bi region. Further experiments on shape coexistence in the neutron-deficient Ir-Bi region are planned using {alpha} decay studies at the FMA at ATLAS. The first experiment is scheduled for later this year
Recommended from our members
Nuclear structure research. Annual progress report
The most significant development this year has been the outcome of a survey of EO transition strength, {rho}{sup 2}(EO), in heavy nuclei. The systematics of {rho}{sup 2}(EO) reveals that the strongest EO`s are between pairs of excited states with the same spin and parity. This is observed in the regions Z,N = 38,60; 48,66; 64,88; and 80,106. Unlike other multipoles it is rare that nuclear ground states are strongly connected to excited states by monopole transitions. Another significant finding is in the results of the experimental study of levels in {sup 187}Au. Two bands of states are observed with identical spin sequences, very similar excitation energies, and EO transitions between the favored band members but not between the unfavored band members. This is interpreted in terms of nearly identical diabatic structures. Experimental data sets for the radioactive decays of {sup 183}Pt and {sup 186}Au to {sup 183}Ir and {sup 186}Pt, respectively, have been under analysis. The studies are aimed at elucidating shape coexistence and triaxiality in the A = 185 region. An extensive program of systematics for nuclei at and near N = Z has been continued in preparation for the planned nuclear structure research program using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A considerable effort has been devoted to HRIBF target development
Recommended from our members
Nuclear structure research. Annual progress report
The most significant development this year has been the realization that EO transition strength is a fundamental manifestation of nuclear mean-square charge radius differences. Thus, EO transitions provide a fundamental signature for shape coexistence in nuclei. In this sense, EO transitions are second only to E2 transitions for signaling (quadrupole) shapes in nuclei and do so when shape differences occur. A major effort has been devoted to the review of EO transitions in nuclei. Experiments have been carried out or are scheduled at: ATLAS/FMA ({alpha} decay of very neutron-deficient Bi isotopes); MSU/NSCL ({beta} decay of {sup 56}Cu); and HRIBF/RMS (commissioning of tape collector, internal conversion/internal-pair spectrometer; {beta} decay of {sup 58}Cu). A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using HRIBF. Theoretical investigations have continued in collaboration with Prof. K. Heyde, Prof. D.J. Rowe, Prof. J.O. Rasmussen, and Prof. P.B. Semmes. These studies focus on shape coexistence and particle-core coupling
Using a cognitive architecture to examine what develops
Different theories of development propose alternative mechanisms by which development occurs. Cognitive architectures can be used to examine the influence of each proposed mechanism of development while keeping all other mechanisms constant. An ACT-R computational model that matched adult behavior in solving a 21-block pyramid puzzle was created. The model was modified in three ways that corresponded to mechanisms of development proposed by developmental theories. The results showed that all the modifications (two of capacity and one of strategy choice) could approximate the behavior of 7-year-old children on the task. The strategy-choice modification provided the closest match on the two central measures of task behavior (time taken per layer, r = .99, and construction attempts per layer, r = .73). Modifying cognitive architectures is a fruitful way to compare and test potential developmental mechanisms, and can therefore help in specifying “what develops.
Understanding Schools and Schooling. (Book Review)
A review of a book written by Clive Chitty (2002 with a useful focus on issues of equity and social justice, including prejudice, discrimination and bullying in secondary schools. Education policy makers need to explore the extent to which it is important to produce interested, motivated and socially balanced young adults. It is well researched and documented
Defining the need for surgical intervention following a snakebite still relies heavily on clinical assessment: The experience in Pietermaritzburg, South Africa
Background. This audit of snakebites was undertaken to document our experience with snakebite in the western part of KwaZulu-Natal (KZN) Province, South Africa (SA).Objective. To document our experience with snakebite in the western part of KZN, and to interrogate the data on patients who required some form of surgical intervention.Methods. A retrospective study was undertaken at the Pietermaritzburg Metropolitan Trauma Service, Pietermaritzburg, SA. The Hybrid Electronic Medical Registry was reviewed for the 5-year period January 2012 - December 2016. All patients admitted to the service for management of snakebite were included.Results. The offending snake is rarely identified, and the syndromic approach is now the mainstay of management. Most envenomations seen during the study period were cytotoxic, presenting with painful progressive swelling (PPS). We did not see any purely neurotoxic or haemotoxic envenomations. Antivenom is required for a subset of patients. The indications are essentially PPS that increases by >15 cm over an hour, PPS up to the elbow or knee after 4 hours, PPS of the whole limb after 8 hours, threatened airway, shortness of breath, associated clotting abnormalities and compartment syndrome. If no symptoms have manifested within 1 hour of a snakebite, clinically significant envenomation is unlikely to have occurred. Antivenom is associated with a high rate of anaphylaxis and should only be administered when absolutely indicated, preferably in a high-care setting under continuous monitoring. The need for surgery is less well defined. Urgent surgery is indicated for compartment syndrome of the limb, which is a potentially life- and limb-threatening condition. Its diagnosis is usually made clinically, but this is difficult in snakebites. Morbidity and cost increase dramatically once fasciotomy is required, as evidenced by much longer hospital stay. There is frequently a degree of cross-over between cytotoxicity and haemotoxicity in envenomations that require fasciotomy, which means that fasciotomy may result in catastrophic bleeding and should be preceded by the administration of antivenom, especially in patients with a low platelet count or a high international normalised ratio. Physiological and biochemical markers are unhelpful in assessing the need for fasciotomy. Objective methods include measurement of compartment pressures and ultrasound.Conclusion. The syndromic management of snakebite is effective and safe. There is a high incidence of anaphylactic reactions to antivenom, and its administration must be closely supervised. In our area we overwhelmingly see cytotoxic snakebites with PPS. Surgery is often needed, and we need to refine our algorithms in terms of deciding on surgery
On the protection of extrasolar Earth-like planets around K/M stars against galactic cosmic rays
Previous studies have shown that extrasolar Earth-like planets in close-in
habitable zones around M-stars are weakly protected against galactic cosmic
rays (GCRs), leading to a strongly increased particle flux to the top of the
planetary atmosphere. Two main effects were held responsible for the weak
shielding of such an exoplanet: (a) For a close-in planet, the planetary
magnetic moment is strongly reduced by tidal locking. Therefore, such a
close-in extrasolar planet is not protected by an extended magnetosphere. (b)
The small orbital distance of the planet exposes it to a much denser stellar
wind than that prevailing at larger orbital distances. This dense stellar wind
leads to additional compression of the magnetosphere, which can further reduce
the shielding efficiency against GCRs. In this work, we analyse and compare the
effect of (a) and (b), showing that the stellar wind variation with orbital
distance has little influence on the cosmic ray shielding. Instead, the weak
shielding of M star planets can be attributed to their small magnetic moment.
We further analyse how the planetary mass and composition influence the
planetary magnetic moment, and thus modify the cosmic ray shielding efficiency.
We show that more massive planets are not necessarily better protected against
galactic cosmic rays, but that the planetary bulk composition can play an
important role.Comment: 7 figure
Density functional study of Au (n=2-20) clusters: lowest-energy structures and electronic properties
We have investigated the lowest-energy structures and electronic properties
of the Au(n=2-20) clusters based on density functional theory (DFT) with
local density approximation. The small Au clusters adopt planar structures
up to n=6. Tabular cage structures are preferred in the range of n=10-14 and a
structural transition from tabular cage-like structure to compact
near-spherical structure is found around n=15. The most stable configurations
obtained for Au and Au clusters are amorphous instead of
icosahedral or fcc-like, while the electronic density of states sensitively
depend on the cluster geometry. Dramatic odd-even alternative behaviors are
obtained in the relative stability, HOMO-LUMO gaps and ionization potentials of
gold clusters. The size evolution of electronic properties is discussed and the
theoretical ionization potentials of Au clusters compare well with
experiments.Comment: 6 pages, 7 figure
Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains
In light of new data on neutron distributions from experiments with
antiprotonic atoms [ Trzcinska {\it et al.}, Phys. Rev. Lett. 87, 082501
(2001)], we reexamine the role of nuclear-structure uncertainties in the
interpretation of measurements of parity violation in atoms using chains of
isotopes of the same element. With these new nuclear data, we find an
improvement in the sensitivity of isotopic chain measurements to ``new
physics'' beyond the standard model. We compare possible constraints on ``new
physics'' with the most accurate to date single-isotope probe of parity
violation in the Cs atom. We conclude that presently isotopic chain experiments
employing atoms with nuclear charges Z < 50 may result in more accurate tests
of the weak interaction.Comment: 6 pages, 1 fig., submitted to Phys. Rev.
Is the Sun Embedded in a Typical Interstellar Cloud?
The physical properties and kinematics of the partially ionized interstellar
material near the Sun are typical of warm diffuse clouds in the solar vicinity.
The interstellar magnetic field at the heliosphere and the kinematics of nearby
clouds are naturally explained in terms of the S1 superbubble shell. The
interstellar radiation field at the Sun appears to be harder than the field
ionizing ambient diffuse gas, which may be a consequence of the low opacity of
the tiny cloud surrounding the heliosphere. The spatial context of the Local
Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at
International Space Sciences Institute, October 200
- …