1,847 research outputs found

    A Comparison of Four Professional Groups\u27 Support for a Strengthened DUI Law

    Get PDF
    This study examined support patterns among criminal justice professionals for an enhanced DUI law. We surveyed North Dakota\u27s police, prosecutors, judges, and addiction counselors to measure their personal support and their perceptions of the support of others for the law. Respondents generally favored the strengthened law, but consistent with role theory, there were significant between group differences. There also were significant differences in personal versus perceived peer support and in perceived peer support versus the perceived support of other groups. Groups tended to agree in the differential levels of support they attributed to other groups. Implications for a coordinated system approach to combatting DUI are identified

    Water velocity limits the temporal extent of herbivore effects on aquatic plants in a lowland river

    Get PDF
    The role of herbivores in regulating aquatic plant dynamics has received growing recognition from researchers and managers. However, the evidence for herbivore impacts on aquatic plants is largely based on short-term exclosure studies conducted within a single plant growing season. Thus, it is unclear how long herbivore impacts on aquatic plant abundance can persist for. We addressed this knowledge gap by testing whether mute swan (Cygnus olor) grazing on lowland river macrophytes could be detected in the following growing season. Furthermore, we investigated the role of seasonal changes in water current speed in limiting the temporal extent of grazing. We found no relationship between swan biomass density in 1 year and aquatic plant cover or biomass in the following spring. No such carry-over effects were detected despite observing high swan biomass densities in the previous year from which we inferred grazing impacts on macrophytes. Seasonal increases in water velocity were associated with reduced grazing pressure as swans abandoned river habitat. Furthermore, our study highlights the role of seasonal changes in water velocity in determining the length of the mute swan grazing season in shallow lowland rivers and thus in limiting the temporal extent of herbivore impacts on aquatic plant abundance

    Alterations of the retinoblastoma gene in metastatic breast cancer

    Get PDF
    Germline mutations affecting the retinoblastoma gene (RB1) predispose to inherited retinoblastomas but also other malignancies, including breast cancer. While somatic RB1 mutations have been detected in different malignancies, information about the potential role of RB1 mutations in breast cancer is limited. Recently, we discovered RB1 mutations to be associated with resistance to anthracyclines/mitomycin in primary breast cancer. The present work is the first report evaluating RB1 mutation and epigenetic status in metastatic breast cancer. Among 148 breast cancer samples analyzed by MLPA, four samples harbored intragenic deletions/duplications: Thus, exons 1–2 were deleted in two tumors and exons 21–23 in one tumor, while one sample harbored duplication of exons 18–23. The entire RB1 gene was duplicated in two tumors and multiple amplifications were revealed in one sample. Reduced copy number was observed in 17 samples (11.5%). No point mutation or promoter hypermethylation was discovered (n = 38 and 114 tumors analyzed, respectively). Interestingly, among seven tumors expressing lack of response to epirubicin, two samples harbored alterations in RB1, contrasting none out of 16 tumors with stable disease or an objective response (P = 0.08). In summary, the frequency of RB1 alterations in metastatic lesions was not increased when compared to primary breast cancer, indicating that RB1 alterations do not play a major role in metastatic development. While a non-significant association suggesting RB1 alterations to be linked to therapy resistance was observed, our data do not suggest a major role for RB1 alterations explaining acquired drug resistance

    Fisher zeros of the Q-state Potts model in the complex temperature plane for nonzero external magnetic field

    Full text link
    The microcanonical transfer matrix is used to study the distribution of the Fisher zeros of the Q>2Q>2 Potts models in the complex temperature plane with nonzero external magnetic field HqH_q. Unlike the Ising model for Hq0H_q\ne0 which has only a non-physical critical point (the Fisher edge singularity), the Q>2Q>2 Potts models have physical critical points for Hq<0H_q<0 as well as the Fisher edge singularities for Hq>0H_q>0. For Hq<0H_q<0 the cross-over of the Fisher zeros of the QQ-state Potts model into those of the (Q1Q-1)-state Potts model is discussed, and the critical line of the three-state Potts ferromagnet is determined. For Hq>0H_q>0 we investigate the edge singularity for finite lattices and compare our results with high-field, low-temperature series expansion of Enting. For 3Q63\le Q\le6 we find that the specific heat, magnetization, susceptibility, and the density of zeros diverge at the Fisher edge singularity with exponents αe\alpha_e, βe\beta_e, and γe\gamma_e which satisfy the scaling law αe+2βe+γe=2\alpha_e+2\beta_e+\gamma_e=2.Comment: 24 pages, 7 figures, RevTeX, submitted to Physical Review

    Seasonal changes in patterns of gene expression in avian song control brain regions.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes

    Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q

    Full text link
    The Q-state Potts model can be extended to noninteger and even complex Q in the FK representation. In the FK representation the partition function,Z(Q,a), is a polynomial in Q and v=a-1(a=e^-T) and the coefficients of this polynomial,Phi(b,c), are the number of graphs on the lattice consisting of b bonds and c connected clusters. We introduce the random-cluster transfer matrix to compute Phi exactly on finite square lattices. Given the FK representation of the partition function we begin by studying the critical Potts model Z_{CP}=Z(Q,a_c), where a_c=1+sqrt{Q}. We find a set of zeros in the complex w=sqrt{Q} plane that map to the Beraha numbers for real positive Q. We also identify tilde{Q}_c(L), the value of Q for a lattice of width L above which the locus of zeros in the complex p=v/sqrt{Q} plane lies on the unit circle. We find that 1/tilde{Q}_c->0 as 1/L->0. We then study zeros of the AF Potts model in the complex Q plane and determine Q_c(a), the largest value of Q for a fixed value of a below which there is AF order. We find excellent agreement with Q_c=(1-a)(a+3). We also investigate the locus of zeros of the FM Potts model in the complex Q plane and confirm that Q_c=(a-1)^2. We show that the edge singularity in the complex Q plane approaches Q_c as Q_c(L)~Q_c+AL^-y_q, and determine the scaling exponent y_q. Finally, by finite size scaling of the Fisher zeros near the AF critical point we determine the thermal exponent y_t as a function of Q in the range 2<Q<3. We find that y_t is a smooth function of Q and is well fit by y_t=(1+Au+Bu^2)/(C+Du) where u=u(Q). For Q=3 we find y_t~0.6; however if we include lattices up to L=12 we find y_t~0.50.Comment: to appear in Physical Review
    corecore