352 research outputs found

    Residual stress characterization of single and triple-pass autogenously welded stainless steel pipes

    Get PDF
    Using neutron diffraction the components of the residual stress field have been determined in the region near a mid-length groove in two identical austenitic stainless pipes in which weld beads had been laid down. One pipe sample had a single pass, and the second a triple pass, autogenous weld deposited around the groove circumference. The results show the effect on the stress field of the additional weld deposited and are compared to the results of Finite Element Modelling. The hoop stress component is found to be generally tensile, and greater in the triple pass weldment than in the single pass weldment. The hoop stresses reach peak values of around 400 MPa in tension. X-ray measurements of the residual stress components on the near inner surface of the pipe weldments are also presented, and show tensile stresses in both pipes, with a higher magnitude in the three-pass weldment

    Skewed recoil polarization in (e,e'p) reactions from polarized nuclei

    Full text link
    The general formalism describing A(e,ep)B\vec{A}(\vec{e},e'\vec{p})B reactions, involving polarization of the electron beam, target and ejected proton, is presented within the framework of the relativistic plane wave impulse approximation for medium and heavy nuclei. It is shown that the simultaneous measurement of the target and ejected proton polarization can provide new information which is not contained in the separate analysis of the A(e,ep)B\vec{A}(\vec{e},e'p)B and A(e,ep)BA(\vec{e},e'\vec{p})B reactions. The polarization transfer mechanism in which the electron interacts with the initial nucleon carrying the target polarization, making the proton exit with a fractional polarization in a different direction, is referred to here as ``skewed polarization''. The new observables characterizing the process are identified, and written in terms of polarized response functions and asymmetries which are of tensor nature. The corresponding half-off-shell single-nucleon responses are analyzed using different prescriptions for the electromagnetic vertex and for different kinematics. Numerical predictions are presented for selected perpendicular and parallel kinematics in the case of 39^{39}K as polarized target.Comment: 30 pages, 8 figure

    Electrically Evoked Cortical Potentials (EECP) in Rabbits Using Implantable Retinal Stimulation System

    Get PDF
    NBS-ERC Supported by KOSEF (Grant R11-2000-075-01001-0) & Korea Health 21 R&D Project MOHW A05025

    Testing a novel large-N reduction for N=4 super Yang-Mills theory on RxS^3

    Full text link
    Recently a novel large-N reduction has been proposed as a maximally supersymmetric regularization of N=4 super Yang-Mills theory on RxS^3 in the planar limit. This proposal, if it works, will enable us to study the theory non-perturbatively on a computer, and hence to test the AdS/CFT correspondence analogously to the recent works on the D0-brane system. We provide a nontrivial check of this proposal by performing explicit calculations in the large-N reduced model, which is nothing but the so-called plane wave matrix model, around a particular stable vacuum corresponding to RxS^3. At finite temperature and at weak coupling, we reproduce precisely the deconfinement phase transition in the N=4 super Yang-Mills theory on RxS^3. This phase transition is considered to continue to the strongly coupled regime, where it corresponds to the Hawking-Page transition on the AdS side. We also perform calculations around other stable vacua, and reproduce the phase transition in super Yang-Mills theory on the corresponding curved space-times such as RxS^3/Z_q and RxS^2.Comment: 24 pages, 4 figure

    Personal verification based on multi-spectral finger texture lighting images

    Get PDF
    Finger Texture (FT) images acquired from different spectral lighting sensors reveal various features. This inspires the idea of establishing a recognition model between FT features collected using two different spectral lighting forms to provide high recognition performance. This can be implemented by establishing an efficient feature extraction and effective classifier, which can be applied to different FT patterns. So, an effective feature extraction method called the Surrounded Patterns Code (SPC) is adopted. This method can collect the surrounded patterns around the main FT features. It is believed that these patterns are robust and valuable. The SPC approach proposes using a single texture descriptor for FT images captured under multispectral illuminations, where this reduces the cost of employing different feature extraction methods for different spectral FT images. Furthermore, a novel classifier termed the Re-enforced Probabilistic Neural Network (RPNN) is proposed. It enhances the capability of the standard Probabilistic Neural Network (PNN) and provides better recognition performance. Two types of FT images from the Multi-Spectral CASIA (MSCASIA) database were employed as two types of spectral sensors were used in the acquiring device: the White (WHT) light and spectral 460 nm of Blue (BLU) light. Supporting comparisons were performed, analysed and discussed. The best results were recorded for the SPC by enhancing the Equal Error Rates (EERs) at 4% for spectral BLU and 2% for spectral WHT. These percentages have been reduced to 0% after utilizing the RPNN

    Meson Exchange Currents in (e,e'p) recoil polarization observables

    Get PDF
    A study of the effects of meson-exchange currents and isobar configurations in A(e,ep)BA(\vec{e},e'\vec{p})B reactions is presented. We use a distorted wave impulse approximation (DWIA) model where final-state interactions are treated through a phenomenological optical potential. The model includes relativistic corrections in the kinematics and in the electromagnetic one- and two-body currents. The full set of polarized response functions is analyzed, as well as the transferred polarization asymmetry. Results are presented for proton knock-out from closed-shell nuclei, for moderate to high momentum transfer.Comment: 44 pages, 18 figures. Added physical arguments explaining the dominance of OB over MEC, and a summary of differences with previous MEC calculations. To be published in PR

    Resveratrol Targeting of Carcinogen-Induced Brain Endothelial Cell Inflammation Biomarkers MMP-9 and COX-2 is Sirt1-Independent

    Get PDF
    The occurrence of a functional relationship between the release of metalloproteinases (MMPs) and the expression of cyclooxygenase (COX)-2, two inducible pro-inflammatory biomarkers with important pro-angiogenic effects, has recently been inferred. While brain endothelial cells play an essential role as structural and functional components of the blood-brain barrier (BBB), increased BBB breakdown is thought to be linked to neuroinflammation. Chemopreventive mechanisms targeting both MMPs and COX-2 however remain poorly investigated. In this study, we evaluated the pharmacological targeting of Sirt1 by the diet-derived and antiinflammatory polyphenol resveratrol. Total RNA, cell lysates, and conditioned culture media from human brain microvascular endothelial cells (HBMEC) were analyzed using qRT-PCR, immunoblotting, and zymography respectively. Tissue scan microarray analysis of grade I–IV brain tumours cDNA revealed increased gene expression of Sirt-1 from grade I–III but surprisingly not in grade IV brain tumours. HBMEC were treated with a combination of resveratrol and phorbol 12-myristate 13-acetate (PMA), a carcinogen known to increase MMP-9 and COX-2 through NF-κB. We found that resveratrol efficiently reversed the PMA-induced MMP-9 secretion and COX-2 expression. Gene silencing of Sirt1, a critical modulator of angiogenesis and putative target of resveratrol, did not lead to significant reversal of MMP-9 and COX-2 inhibition. Decreased resveratrol inhibitory potential of carcinogen-induced IκB phosphorylation in siSirt1-transfected HBMEC was however observed. Our results suggest that resveratrol may prevent BBB disruption during neuroinflammation by inhibiting MMP-9 and COX-2 and act as a pharmacological NF-κB signal transduction inhibitor independent of Sirt1

    Mechanical properties, microstructure and crystallographic texture of magnesium AZ91-D alloy welded by Friction Stir Welding (FSW)

    Get PDF
    The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding (FSW). The results led to a better understanding of the relationship between this process and the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures appeared from a base metal without texture in two zones: the thermo-mechanically affected and stir welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the TMAZ, which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly
    corecore