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Abstract: Finger Texture (FT) images acquired from different spectral lighting sensors reveal various features. This inspires the
idea of establishing a recognition model between FT features collected using two different spectral lighting forms to provide high
recognition performance. This can be implemented by establishing an efficient feature extraction and effective classifier, which
can be applied to different FT patterns. So, an effective feature extraction method called the Surrounded Patterns Code (SPC)
is adopted. This method can collect the surrounded patterns around the main FT features. It is believed that these patterns
are robust and valuable. The SPC approach proposes using a single texture descriptor for FT images captured under multi-
spectral illuminations, where this reduces the cost of employing different feature extraction methods for different spectral FT
images. Furthermore, a novel classifier termed the Re-enforced Probabilistic Neural Network (RPNN) is proposed. It enhances
the capability of the standard Probabilistic Neural Network (PNN) and provides better recognition performance. Two types of
FT images from the Multi-Spectral CASIA (MSCASIA) database were employed as two types of spectral sensors were used in
the acquiring device: the White (WHT) light and spectral 460 nm of Blue (BLU) light. Supporting comparisons were performed,
analysed and discussed. The best results were recorded for the SPC by enhancing the Equal Error Rates (EERs) at 4% for
spectral BLU and 2% for spectral WHT. These percentages have been reduced to 0% after utilizing the RPNN.

1 Introduction

The term ‘biometric’ is currently widely used to indicate an efficient
way of recognizing people. It has been explored for many years in
different applications. Examples of these applications are security
systems, people recognition, and forensic investigations. Many bio-
metric characteristics within the human body have been separately
investigated such as the fingerprint [1], iris [2], face [3], palm [4],
speaker [5] and Finger Texture (FT) [6]. Furthermore, various stud-
ies have also been exploited by utilizing more than one biometric
characteristic as in [7].

Rich characteristics can be observed in any single finger. First of
all, they hold the most famous biometric, which is the fingerprint,
in addition to other attractive biometrics such as Finger Geometry
(FG), Finger Veins (FV), Finger Outer Knuckle (FOK), Finger Inner
Knuckle (FIK) and Finger Texture (FT).

Inner finger surface texture has drawn considerable attention over
approximately the last ten years and it has similar patterns to the
palm. These patterns are known as the FT, and they mainly include
wrinkles and principal lines. FTs are reliable and unique between the
individuals and even between the identical twins [8]. Furthermore,
there are many advantages beyond using the FTs such as they involve
rich information, they resist to emotional feelings, and their patterns
are stable and reliable [8]. They can be found on the inner surface
of the index, middle, ring and little fingers. Principally, the FT is
positioned between the upper phalanx (directly under the fingerprint)
and the lower knuckle (the base of the finger). It comprises of three
phalanxes and three knuckles. Thus, it involves different qualified
patterns. The main FT locations in a hand image are given in Fig.
1(a), whereas, the main FT parts in a single finger are given in Fig.
1(b).

It has been cited that using one sensor to acquire a single type
of biometric features can cause series verification obstacles [9]. In
addition, it has been confirmed that by applying different spectral
lightings during the acquisition step, various FT features are revealed
[10]. This has inspired the idea of this paper. So, the aim of this
study is to suggest a powerful human verification system based on
multi-spectral FT features.

The contributions of this work are as follows:
• Establishing a new feature extraction method called the Sur-
rounded Patterns Code (SPC) robust to collect the surrounded
patterns around the main FT features, which acquired under multi-
spectral illuminations.
• Designing and implementing a novel neural network called the
Re-enforced Probabilistic Neural Network (RPNN), which intends
to contribute to this growing area of recognition research.

Different comparisons are performed to demonstrate the ability
and efficiency of the proposed methods. The results are provided
by employing FT images of two spectra that collected from the
MSCASIA Palmprint image database (Version 1.0) [11].

This paper is organised as follows: Section 2 states the prior
work, Section 3 illustrates the methodology of the suggested SPC,
Section 4 describes the architecture of the proposed RPNN, Section
5 discusses the obtained results and Section 6 concludes this paper.

2 Prior work

The idea of employing the FTs probably started by Ribaric and
Fratric [12], where this study introduced a multi-modal biometric
system by using eigenfinger and eigenpalm features. In this publi-
cation a scanner device was used to acquire high resolution hand
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Fig. 1: The main positions and parts of the FTs:
a The main positions of the FTs, they are distributed in the inner surface of fingers. They
are located between the upper phalanx (under the fingerprint) and the lower knuckle (the
base of the finger)
b The main FT parts in a single finger. It consists of three phalanxes (distal, intermediate
and proximal) and three knuckles (upper, middle and lower)

images. So, the hands of the participants were located in a spe-
cific position with small limitations for finger translations. In this
study a fixed ratio size of the FT is considered in each finger. This
means that not all the FT regions were covered because the fin-
gers have different sizes. Pavesic et al. [13] established a study to
fuse the fingerprints with the FTs for each finger. The authors also
used a scanner acquisition device to collect part of hand images.
So, they used high resolution part hand images located in a lim-
ited space, which allowed just small finger movements. The thumb
was excluded with parts of upper and lower knuckles of the four
fingers (index, middle, ring and little). Furthermore, the authors
assigned for each finger a fixed ratio size of the FT region, which
may cause parts of the finger width to be cancelled. Michael et
al. [14, 15] designed a system to track hand fingers from a video
stream. A web camera and warm-white light bulb were utilized. Fur-
thermore, a fusion method between the FTs and the palm print was
presented. A score fusion was exploited, but by applying the Support
Vector Machine (SVM) technique with the kernel of Radial Basis
Function (RBF). Before that, a matching was applied by using the
Hamming distance for the palm print and Euclidean distance for the
FTs. Kanhangad et al. [16] established combination work of vari-
ous hand characteristics. Basically, these characteristics were FTs;
hand geometry and palm print. Furthermore, 2D and 3D biomet-
ric features were studied for the hand geometry and palm print. A
database called the Hong Kong Polytechnic University Contact-free
3D/2D (PolyU3D2D) Hand Images Database (Version 1.0) [17] was

used. The hand images of this database were collected under nor-
mal lighting. Zhang et al. [18] utilized the features of the middle
finger and the palm print in a Single Sample Biometrics Recogni-
tion (SSBR), where both can be acquired from a single image. Part
of the lower knuckle is included. It can be investigated that low res-
olution FT images of 30× 90 pixels were collected. So, it is not
worth to include the fingerprint with the FT, because the fingerprint
patterns cannot be involved. Sankaran et al. [19] described a finger-
photo verification by using the mobile phone camera. In this paper,
the FT is used with the fingerprint. Only two right hand fingers were
employed, the middle and index fingers. Furthermore, a part of the
lower FT area was not covered (the proximal phalanx with the lower
knuckle or sometimes only the lower knuckle). So, this study was
not comprehensively established for the FTs.

-Al-Nima et al. [20] proposed a method to extract the full regions
of the FTs from the four fingers based on the traditional contour.
This publication confirmed that increasing the collected FT patterns
would increase the performance of the biometric recognition. Effec-
tively, the main FT regions for the four fingers were assigned in
this study. The PolyU3D2D database was used, as mentioned the
images of this database are acquired under a normal lighting. Al-
Nima et al. [10, 21, 22] employed feature level fusion based on the
concatenation rule between the FT features of fingers. More experi-
ments were included in [10] to examine the verification performance
with missing finger elements (or parts). For example, removing a
distal phalanx; a distal and an intermediate phalanxes; one finger
and two fingers. An approach has also been suggested, implemented
and analysed to increase the verification performance rates in the
case of such missing elements. Additional combination method was
explained in [22], where a novel neural network named the Finger
Contribution Fusion Neural Network (FCFNN) has been suggested.
The FCFNN fuses the contribution scores of the finger objects. This
approach was inspired from the different contribution of each fin-
ger, where the contribution score of any finger in terms of individual
verification is not the same as the contribution score of the another
finger. Different databases were utilized by [10, 21, 22] in which a
single lighting source is exploited.

It can be investigated from the previous literature that no study
has considered employing different FT features acquired from differ-
ent lighting sensors. The specifications of the MSCASIA database
have been found to be valuable in this paper. By using various FT
specifications captured from different spectra, an efficient personal
biometric recognition system can be established.

3 The Feature Extraction Approach

A segmentation approach that was suggested in [10] to isolate fin-
ger areas from contact-free hand images is employed in this study.
It consists of several image processing steps which were designed
to maintain the hand area and detect the fingers. These steps are
collecting the grayscale hand image; applying a binarization oper-
ation; removing all the small noises around the largest hand region;
complementing the resulting image; deleting the noises which might
exist within the hand border and detecting the finger objects. Hence-
forth, the main finger points (tip, valley and symmetric) can be
determined and used to segment the finger images. Then, segmenting
the four finger images of (little, ring, middle and index) are carried
out. It is worth mentioning that additional pixels have been included
with each segmented finger image to cover the patterns of the lower
knuckles as these patterns can enhance the verification performance
according to [20].

After that, extracting the Region of Interest (ROI) of the FT has
been performed. A useful method has been utilized based on the
adaptive inner rectangle. This method has been reported in [16],
where an adaptive inner rectangle was applied to extract the ROI
for the four fingers. In this publication the lower or third inner
knuckle was not considered and thus important features of the FTs
are avoided. A further modified model for the adaptive ROI rectan-
gle is applied here, where the lower knuckles are collected for each
finger. After specifying the ROI, fixed resizing has been applied.
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Fig. 2: Demonstrating the SPC feature extraction method:
a Locations of surrounded patterns, they surround the horizontal and vertical patterns
b Example of analysing the vertical and horizontal patterns by using the SPC
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Fig. 3: 3D bar analysis for a BLU spectral FT image of a middle finger. (a) Pixel levels of the original FT image. (b) Pixel levels of the
horizontal patterns. (c) Pixel levels of the vertical patterns. (d) Pixel levels of the fusion between the vertical and horizontal patterns.

The normalization resize is considered equal to 30× 150 following
[6, 10, 21, 22].

Hereafter, a new feature extraction approach to analyse the FT
features of different spectra, specifically the BLU and WHT, is
adopted. The feature extraction is performed to each ROI image by
using the SPC method. Then, the Coefficient of Variance (COV) cal-
culations is used following [6, 10, 20]. The resulted COV values have
been used as inputs to the RPNN.

SPC feature extraction can effectively analyse the vertical and
horizontal patterns of FTs. The output of the SPC is an enhanced
image, which is resulted after applying the SPC calculations.

First of all, differences between symmetric pixels of vertical and
horizontal vectors are separately calculated according to the follow-
ing equations:

SPCv(ce) =

m−ce−1∑
i=0

α(i)(vm−i − vi) (1)

SPCh(ce) =

m−ce−1∑
i=0

α(i)(hm−i − hi) (2)

where: SPCv is the extracted value from the vertical vector, SPCh

is the extracted value from the horizontal vector, ce is the location
of the centre pixel in either the vertical or the horizontal vector and
it is equal to

⌈
m
2

⌉
where d.e represents the ceiling operator, α(i) is

the sign of the subtraction operation, m is the vector length, v is the
vertical pixels along the vertical vector, and h is the horizontal pixels
along the horizontal vector.

This idea is similar to the difference filter. Nevertheless, the dif-
ference filter considers the differences between only two neighbour
values and this is not sufficient to clarify the surrounded patterns.

Hence, two main possibilities can be achieved. Firstly, the hori-
zontal or vertical code has a low or zero value, this is resulting from
the differences between two half vectors, which have almost equal-
ized symmetric pixel values. Secondly, the horizontal or vertical
code has high absolute value, this is resulting from two significant
differences between symmetric pixel values around the horizontal or
vertical vector. The second possibility can enhance the contrast of
the surrounded patterns.

Basically, the SPCv(ce) is assigned to analyse the FT vertical
patterns. Whereas, the SPCh(ce) is determined to analyse the hor-
izontal FT patterns. Consequently, the amplitude equation is used
to obtain the desired code of the SPC according to the following
equation:

SPCt =

√
SPCv

2 + SPCh
2 (3)
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where: SPCt is the magnitude code between the resulted values of
the vertical and horizontal filters. Figs. 2(a and b) demonstrates the
SPC locations and operations.

This suggested feature extraction has the following utilities: it
calculates single-dimensional filters for each of the two directions
(vertical and horizontal); it considers the differences between sym-
metric pixel values around the centre pixels of vertical or horizontal
vectors; and it adaptively adjusts the difference sign value α between
{1,-1} according to the subtraction operation. In addition, the SPC
operator does not involve many operations as in [23].

After applying the SPC feature extraction approach to both WHT
and BLU spectra FT images, it has been resulted that the surrounded
features were efficiently described. To illustrate, both the surrounded
horizontal and vertical FT patterns have been extracted and the new

  
  
  
  
  

 

 

 

Fig. 4: FT images of the WHT spectral before and after the SPC.
The first column in the left is for the original FT images. The second
column in the right is for the SPC images. Additionally, the rows are
assigned for the four fingers, from the top index; middle; ring and
little fingers, respectively.

  
  
  
  
  

 

 

 

 

Fig. 5: FT images of the BLU spectral before and after the SPC.
The first column in the left is for the original FT images. The second
column in the right is for the SPC images. Additionally, the rows are
assigned for the four fingers, from the top index; middle; ring and
little fingers, respectively.

form of the FT has been found to be more robust in terms of describ-
ing these features. An example of 3D bar plots of the distributed FT
pixels prior to, during and after the SPC are given in Fig. 3.

From this figure, it can be seen that the distribution of FT pixel
values before using the SPC operation were smoothly flows. In other
words, the contrast between the FT features was not clear. After cal-
culating the SPCv values, the surrounded horizontal patterns of the
FT are extracted. Likewise, after computing the SPCh values, the
surrounded vertical patterns of the FT are collected. Subsequently,
combining the extracted vertical and horizontal features by calculat-
ing the SPCt values caused the surrounded patterns to be efficiently
described. That is, clear contrasted FT images are constructed, where
the surrounded FT patterns can be recognized.

Moreover, Figs. 4 and 5 reveals that various patterns can be
extracted from the different fingers. Furthermore, various features
can be collected after employing different spectral lightings. This
fact was also confirmed in [24] and [10].

To calculate the COV values, each SPC image is partitioned into
non-overlapped windows. The COV value of each window can be
calculated according to the following equations [25]:

Mseg =
1

n

n∑
i=1

segi (4)

STDseg =

√√√√ 1

n− 1

n∑
i=1

(segi −Mseg)2 (5)

COVseg =
STDseg
Mseg

(6)

where n is the number of pixels in each window, seg is a 5× 5 pixels
window just as in [6, 10, 20], M is the mean, STD is the standard
deviation and COV is the coefficient of variance value.

The COV has the following advantages: it reduces the image size,
where each image window has been reduced to one value; it is easy
to calculate; it efficiently describes the variances between the pixel
values [10]; all values are small and positive; the variances between
the features for the same subject are well described and the variances
between the features for different subjects are well described [6].

4 The Re-enforced Probabilistic Neural Network

In this context, a novel RPNN is proposed for verification. Funda-
mentally, the computations of this network are motivated from the
PNN. However, the standard PNN works in a feedforward policy and
it calculates the probabilities of the most corresponding weights to
specific input values. Therefore, if the extracted feature values of the
certain input are not accurate, the PNN will generate incorrect veri-
fication decision. Also, its output decision affects by the quality and
accuracy of the provided input. From this point, the RPNN can over-
come this drawback by considering a feedback from the output to the
hidden layer and allowing supported input and weight values to be
carried out by the network. In this case the verification performance
can be further enhanced.

The proposed RPNN consists of input layer; hidden layer; sum-
mation layer and decision layer. Furthermore, connection weights
are distributed between the layers just as the PNN. However, feed-
back connection weights are considered between the output layer
and the hidden layer. Fig. 6 demonstrates the structure of the
suggested RPNN.

The RPNN operations can be explained as follows: the hidden
values of the hidden layer are calculated according to Equation (7)
[26], this equation is also known as the Radial Basis Function (RBF):
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Fig. 6: The general architecture of the RPNN composes of an input
layer; hidden layer; summation layer; decision layer and feedback.

Zi,j = exp

[
−
(xλ − wλi,j)

T (xλ − wλi,j)
2σ2

]
,

i = 1, 2, ..., p , j = 1, 2, ..., c (7)

where Zi,j represents a hidden layer node value, xλ represents the
input vector xλ = [xλ1 , x

λ
2 , ..., x

λ
n]
T , wλi,j is the ith vector of class

j, thus, the weight vector can be described or formed as wλi,j =
[wλ1 , w

λ
2 , ..., w

λ
n]
T , λ represents the certain spectral {1,2}, σ is the

spread controlling parameter of the Gaussian function, p is the num-
ber of the training vectors in each class and c is the number of classes
or subjects.

The summation layer will collect the hidden values from the hid-
den layer and assign the trained input vectors to specific classes:

Sj =
1

p

p∑
i=1

Zi,j , j = 1, 2, ..., c (8)

where Sj is a summation layer node value.

The decision layer will perform a winner takes all rule by utilizing
the following Equation (9):

Dj =

{
1 if Sj = max
0 otherwise , j = 1, 2, ..., c (9)

where Dj is a decision layer node value and max is the maximum
Sj value.

Basically, the RPNN aims to generate weight values in the train-
ing phase to establish a non-linear relationship between the inputs
and targets. Then, these weights can be saved in a template file and
used in the testing phase to predict the outputs according to the pro-
vided inputs. In the training phase (or registration step), the weight
values are generated exactly equal to the training input values. The
RPNN stores the main weights (or the training inputs of spectral
BLU) between the input and hidden layers, whereas, the RPNN
saves the supported weights (or the training inputs of spectral WHT)
between the output and hidden layers. The COV values of the FTs
of four fingers (index, middle, ring and little) are concatenated and
used as inputs to the RPNN, overall 720 input values for each sam-
ple. Whilst, each node in the output of the RPNN refers to a subject
or person. So, 100 nodes have been used for the RPNN, where these
are exactly equal to the number of people who provided their images
in the database. The output decision values are set as logic ‘1’ for
the determined subject or person and ‘0’s to all other nodes.

In the training phase, the RPNN stores the wλi,j weights. The main
weights will be saved between the input and hidden layers, whereas,
the supported weights will be saved between the output and hidden
layers. In the testing phase, all the above mentioned equations are
considered, but for new hand images. Hence, if the claimed verifica-
tion for a certain subject or class is not correct, the λ will be changed
to the second supported features from the second spectral and its
feedback weights will be used instead of the forward weights. In this
case, the second spectral inputs xλ will be given. The first inputs
have been chosen for the BLU features following [10, 22], so, the
supported FT features belong to the WHT. The last step is to obtain
the final verification decision.

There are some interesting points which can be highlighted for the
RPNN: it is not affected by the local minimum error in the cost func-
tion; the training phase is very fast as it requires only one iteration to
complete all the training and two iterations to complete the testing
part; it has the ability to include additional users; it has the ability
to delete trained users and it provides measures of confidences by
considering the probabilities of the inputs.

It is true that the network requires reasonable size of memory.
However, this is not a big issue because of the availability of com-
puters with large memories. It is believed that the high verification
accuracy, which can be provided by the RPNN, is more important
than the required size of the memory. Furthermore, the featured
vectors have much reduced sizes than the original images of the
fingers.

5 RESULTS AND DISCUSSIONS

5.1 Applied Database

With the CASIA Multi-Spectral Palmprint Image Database (Ver-
sion 1.0), or simply MSCASIA database, multi-spectral light sensors
were used to capture different features of the hand images. Princi-
pally, the skin of an inner hand surface appears various character-
istics if different spectral lightings are applied. This is due to the
penetration of the given spectral. A multi-spectral acquisition device
was established to capture six patterns types of hand images. These
images have been made open access to expand the studies of bio-
metrics. It is touchless as there are no limitations to the location
of the hand. However, the participants were expected to open their
hands inside the acquisition box. A dark background (mainly black)
was used. A Charge Coupled Device (CCD) camera was located at
the bottom of the device and the lighting was equally distributed. A
total of 100 users contributed with their right and left hand images.
Six samples were captured in two sessions. That is, three samples
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were captured in session one and after just over a month, in session
two, an additional three samples were collected. Multi-spectral light-
ings were used to capture six image patterns at a certain time. The
utilized spectra had the illuminations of 460 nm, 630 nm, 700 nm,
850 nm, 940 nm and WHT. Therefore, the total number of provided
MSCASIA images in this database was 7,200 right and left hand
images. They were stored as JPEG images and they are all of 8-bits
grayscale. In the case of resolution, each hand image had 576× 768
pixels [11]. Basically, the wavelengths of 630 nm and 850 nm con-
tains FTs with veins, and the wavelengths of 700 nm and 850 nm
contains only veins. In this study, hand images of spectral 460 nm
are employed, because spectral wavelength BLU contains only the
FTs as stated in [27, 28]. In addition, hand images that acquired by
using the WHT light sensor also provide FT patterns, due to the fact
that only the FTs can be seen under the normal visible light. It is
thus a good opportunity to study the specifications of the FTs under
different spectral lights.

Four fingers (the index, middle, ring and little fingers) from
the right hand images for both employed spectra were segmented
according to [10]. A total of 4,800 finger images are used in this
study, 2,400 finger images for spectral WHT, and the rest of fin-
ger images are used for spectral BLU of the same database. For the
training phase, 4,000 fingers have been exploited, and for the test-
ing phase, 800 fingers have been utilized. It is true that the number
of testing samples was small, but this is the same number of train-
ing samples in [6, 10, 16, 20]. This will allow fair justifications with
the state-of-the-art work. Nevertheless, additional experiments have
been applied by varying the number of training/testing samples and
recording the obtained EERs.

5.2 Results and Discussions for the SPC

First of all, the SPC has been implemented to each FT as demon-
strated in Figs. 2, 3, 4 and 5. To illustrate, the surrounded vertical and
horizontal patterns, which are located around the main FT patterns
as shown in Fig. 2(a), of each FT image have been analysed as rep-
resented in Fig. 2(b) by applying the SPC calculations according to
Equations (1), (2) and (3). Principally, the original FT image shows
low contrast levels to overall information as presented in Fig. 3(a).
After analysing the surrounded horizontal patterns, high contrast
levels are clarified between them as shown in Fig. 3(b). Likewise,
after analysing the surrounded vertical patterns, high contrast levels
are constructed between them as shown in Fig. 3(c). By combining
both contrasted patterns, rich and effective levels of information are
resulted as presented in Fig. 3(d). So, the resulted images show high
contrast information between the surrounded patterns as the given
examples in Figs. 4 and 5 for WHT and BLU spectral images respec-
tively, where groups of FT images are demonstrated before and after
the SPC feature extraction.

Both FT spectra were evaluated with the SPC feature extraction.
The first important examination to be considered is the length of the
vertical or horizontal vector N (in pixels) as different lengths provide
various pattern scales. So, the most appropriate patterns were inves-
tigated for each spectral with the standard PNN in terms of obtaining
the best EER value. Figs. 7(a) and 7(b) show results of various SPC
lengths for both the WHT and BLU databases, respectively. It is clear
from Fig. 7(a) that N = 9 has achieved the best EER for the WHT
features compared with other lengths as increasing or decreasing the
number of pixels would change the effectiveness of the resulted SPC
patterns. In Fig. 7(b), several number of lengths has attained the best
reported EER for the BLU features, these are N = 11, N = 13, N =
15 and N = 17. Therefore, to select the best length additional evalu-
ation has been applied. That is, the time consuming of applying the
SPC function to each of the certain length. Fig. 7(c) indicates that
reducing the number of processed pixels will decrease the required
processing time. So, choosing the smallest length which can attain
the least EER value is preferable. Thus, the length of N = 11 has
been selected for the SPC in the BLU database, because this length
recorded faster time than the lengths of N = 13, N = 15 and N = 17.

Table 1 shows comparisons between the various types of feature
extraction approaches by using the standard PNN. It can be seen
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Fig. 7: Examining the length of the SPC vectors:
a SPC vectors lengths versus EER performances for the WHT database
b SPC vectors lengths versus EER performances for the BLU database
c SPC vectors lengths versus timings

from this table that inferior EER values of 60% and 78% have been
reported for the method, which is the Centralized Binary Patterns
(CBP), that calculates the diagonals patterns and perform fewer com-
putations to all directions (both diagonals, horizontal and vertical).
The Local Gradient Coding-Horizontal and Diagonal (LGC-HD)
method attained high EER values of 22% and 27% because it com-
putes the gradients of the diagonal patterns and the gradients of the
horizontal patterns. However, it ignores the calculations of the verti-
cal patterns, which are very important for FTs. Both the Three-Patch
LBP (TPLBP) and the Simplified LBP (SLBP) recorded comparable
performance 13% and 12% respectively for the FTs of the WHT
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Table 1 Results of different feature extraction methods for the FTs of the four fingers by using the standard PNN

CASIA database (spectral WHT)

Reference Method Parameters EER

[29] CBP Neighbourhood Pixels=8, Radius=2 60%

[30] LGC-HD Neighbourhood Pixels=8, Radius=1 22%

[31] TPLBP Patch size=3, Radius=2, No. of patches=8, Step jump=5 and Threshold=0.01 13%

[32] SLBP Neighbourhood Pixels=8, Radius=1 12%

[20] IFE Exponential histogram 10%

[10] ELLBP Vertical patterns weight=0.7 and horizontal patterns weight=0.3 7%

[22] MSALBP Neighbourhood Pixels=8, Radius=2 5%

Proposed approach SPC — 2%

CASIA database (spectral BLU)

Reference Method Parameters EER

[29] CBP Neighbourhood Pixels=8, Radius=2 78%

[30] LGC-HD Neighbourhood Pixels=8, Radius=1 27%

[31] TPLBP Patch size=3, Radius=2, No. of patches=8, Step jump=5 and Threshold=0.01 34%

[32] SLBP Neighbourhood Pixels=8, Radius=1 32%

[20] IFE Exponential histogram 11%

[10] ELLBP Vertical patterns weight=0.2 and horizontal patterns weight=0.8 5%

[22] MSALBP Neighbourhood Pixels=8, Radius=2 5%

Proposed approach SPC — 4%

spectral, but low comparable performance 34% and 32% respec-
tively for the FTs of the BLU spectral. This is because they consider
clear textures which can be collected from normal lighting, but they
have low performance for the micro-textures obtained from the low
wavelength lighting. The novel feature extraction approach, which is
termed the Image Feature Enhancement (IFE) has achieved slightly
high EER values of 7% and 11% for the WHT and BLU spectra,
respectively. This is due to the key idea of this method, where it
aimed to enhance the contrast between the top and bottom values
of the image features in general. On the other hand, the ELLBP
method recorded reasonable EER values of 7% and 5% for the WHT
and BLU spectra respectively as this method has the ability of effi-
ciently analyse the FT features. That is, the ELLBP concentrates
on the vertical and horizontal patterns, and obviously these are the
main patterns of the FT. Also, it efficiently calculates their weights
in its weighted summation equation. The best ELLBP parameters
for spectral BLU have been found to be v1 = 0.2 and v2 = 0.8
[10]. However, the effective FT parameters for the WHT light have
empirically been investigated to be v1 = 0.7 and v2 = 0.3. It is
worth mentioning that these are exactly the same parameter values
of the Indian Institute of Technology (IIT) Delhi database in [10]
as the images of this database were collected under normal light-
ing. The MASLBP can be considered as one of the most recent and
effective FT feature extraction approaches. It obtained comparable
results with the ELLBP feature extraction, 5% in both the WHT and
BLU spectra of the MSCASIA database. This is because that the
MSALBP also focuses on the main FT patterns of the vertical and
horizontal. Clearly, the proposed SPC feature extraction attained best
verification performances of 2% and 4% for both the WHT and BLU
spectra respectively, which means that this method can provide best
descriptions for multi-spectral FT patterns.

To summarize, the advantages of the SPC feature extraction are
as follows:
1. It is robust to collect the surrounded patterns around the main FT

features.
2. It is simple to implement and it can be used with different spectra
of FT images. So, this will reduce the cost of utilizing different fea-
ture extraction algorithms to analyse the different spectral images.
3. It can obtain better verification accuracy than other Feature
extraction methods, as shown in Table 1.

5.3 Results and Discussions for the RPNN

The FT images have been divided for each individual into two parts;
the first part is used in the training phase and the second part in the
testing phase. This will ensure that the neural network will test new
FT images which have not been given before.

During the training phase, the RPNN has been trained for each
subject by the input values of spectral BLU and spectral WHT. The
first inputs have been chosen for the BLU features following [10, 22]
and the supported inputs have been selected for the WHT. Due to the
fact that the RPNN saves the input values (as the PNN), the main
weights (from BLU) have been saved between the input and hid-
den layers and the supported weights (from WHT) have been saved
between the output and hidden layers. During the testing phase, new
FT images have been considered. The input values of the BLU spec-
tral have been examined by the RPNN in a forward direction. Hence,
when the claimed verification of a certain subject was not correct, the
RPNN was switched to the supported values of the second spectral.
So, its feedback weights have been employed instead of the forward
weights and the COV values of the WHT spectral have been used in
the input. Finally, the verification results have been recorded.

A novel approach that has been suggested in [6] is utilized in this
paper to generate the Receiver Operating Characteristic (ROC) graph
from the RPNN. Fig. 8(a) illustrates three ROC curves, two curves
for the two spectral databases after employing the standard PNN and
another curve after applying the RPNN. This is the first time that
the ROC curve is produced for the RPNN. To establish the ROC
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Table 2 Review summary of the prior work for the four fingers without and with the lower knuckles

Reference Feature extraction method Employed classifier Database EER (Without the EER (With the

inner knuckles) inner knuckles)

[16] CompCode HD PolyU3D2D 6% —

[20]

IFE based flat histogram PNN PolyU3D2D 5.54% 4.07%

IFE based exponential histogram PNN PolyU3D2D 5.42% 4.07%

IFE based bell-shaped histogram PNN PolyU3D2D 12.66% 7.01%

[6]

LBP PNN PolyU3D2D 1.81% —

Gabor PNN PolyU3D2D 4.97% —

— PNN PolyU3D2D 16.95% —

[10] ELLBP

PNN PolyU3D2D 0.68% 0.45%

PNN IIT Delhi — 3.38%

PNN MSCASIA (Spectral BLU) — 5%

[22] MSALBP

PNN PolyU3D2D — 0.79%

FCFNN PolyU3D2D — 0.34%

PNN MSCASIA (Spectral BLU) — 5%

FCFNN MSCASIA (Spectral BLU) — 2%

This work SPC RPNN MSCASIA (Spectral BLU and Spectral WHT) — 0%

curve for the RPNN the following steps can be followed: collecting
the score values from the summation layer; remapping their val-
ues according to the desired targets; extracting the False Acceptance
Rate (FAR) and True Positive Rate (TPR) values for each class; cal-
culating the averages of FARs and TPRs for all classes; and depicting
the ROC curve. These steps were inspired from [6] and have been
applied to the RPNN as first time in this paper.

With the state-of-the-art, Table 2 summarises previous FT stud-
ies and the current approaches. The majority of these studies such
as [6, 16, 20] have employed the PolyU3D2D Database [17]. This
database has 1,770 hand images, each participant provided his/her
hand images to be acquired from a distance of approximately 0.7
metres. The major problem with this database is that it includes
very low resolution images. Kanhangad et al. used this database
in [16], where series of operations were adopted: segmenting the
finger images; extracting the ROIs; using the CompCode feature
analysis method and applying the Hamming Distance (HD) to mea-
sure the variances between the samples. A high EER value was
recorded to 6% and this is due to the suggested finger segmentations
and ROI extraction methods, where the lower knuckles of the FTs
were completely ignored. In [20], it was confirmed that the lower
knuckles have important features as after including these patterns
improvements were recorded in the recognition performance using
three different feature analysis methods. The authors adopted a novel
feature enhancement approach called the IFE, which consists of
multiple processes starting from the Contrast Limited Adaptive His-
togram Equalization (CLAHE) and increasing the contrast between
the highest values and the lowest values of the FT images. Three
types of CLAHE histograms were examined: flat, exponential and
bell-shaped histograms, they attained 5.54%, 5.42% and 12.66%,
respectively for FTs without the inner knuckles, and they achieved
4.07%, 4.07% and 7.01%, respectively for FTs with the inner knuck-
les. The worst result was for the IFE based bell-shaped histogram. A
new approach was presented in [6] to establish a Receiver Operating
Characteristic (ROC) graph for a multiple class PNN. Three feature
analysis methods were employed to clarify the ability of the pro-
posed approach: the Local Binary Patterns (LBP), the Gabor filter
and using the FTs images without analysis, they obtained 1.81%,
4.97% and 16.95%, respectively. It can be investigated that all the

presented state-of-the-art processes applied COV statistical mea-
surements, except [16]. It appears that this strategy has effective
computations for determining the variances between the data. A
detailed study of using the FTs for the personal verification was
introduced in [10]. This study has different contributions. Three hand
image databases were employed: the PolyU3D2D [17], IIT Delhi
[33, 34] and spectral 460 from the MSCASIA [11]. ELLBP feature
extraction approach was applied to these databases and recorded low
EER percentages of 0.45%, 3.38% and 5%, respectively. Extended
FT study was presented in [22], it presented two new approaches:
the MSALBP feature extraction and the FCFNN fusion classifier.
It can be seen that the results were further enhanced after using
both approaches together, from 0.79% to 0.34% and from 5% to
2% for the PolyU3D2D and MSCASIA (spectral BLU), respectively.
Finally, in this paper the SPC method and RPNN is adopted with
the two MSCASIA databases (images of spectral BLU and images
of spectral WHT). The proposed SPC and RPNN provide superior
benchmarked performance over various feature extractions and clas-
sifiers in previous work. The best verification performance has been
benchmarked to EER=0%. Basically, the EER value for spectral
BLU was 4% and the EER value for spectral WHT was 2%.

Finally, all the previous work has employed 5 training and 1 test-
ing samples for a hand fingers of each individual. Obviously, the
number of training samples are too big comparing with the num-
ber of testing samples. Therefore, additional experiments have been
established by reducing the number of the training samples of hand
fingers and increasing the number of the testing samples of the same
hand fingers. Fig. 8(b) shows the performance of employing various
numbers of training and testing samples.

It can be seen from Fig. 8(b) that decreasing the number of train-
ing samples leads to increase the EER values. The best EER value
has been benchmarked to 0% after using the RPNN by employing
a high number of training samples of hand fingers for each indi-
vidual. By decreasing this number to 16 fingers per individual and
increasing the number of the testing samples to 8 fingers per individ-
ual, this approximately allowed 66% of overall samples to be used
in the training phase and about 34% of overall samples to be eval-
uated in the training phase, a competitive EER value of 3% after
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Fig. 8: Resulted recognition curves:
a ROC curves of the SPC feature extraction for the MSCASIA (WHT), MSCASIA
(BLU) and both but by using the RPNN
b EER results after using various numbers of training and testing samples

employing the RPNN has been produced. By decreasing the num-
ber of the training samples more the performances of the verifica-
tion system dramatically reduces. That is, 8% and 37% have been
recorded after employing the RPNN when respectively using 50%
and approximately 34% of the data in the training phase. Overall,
utilizing the RPNN has confirmed its ability to further enhance the
EER percentages comparing with separately using the spectra FT
images (WHT or BLU).

Moreover, additional evaluation based on the cross-validation has
been exploited. The key idea of this method is that the 6 samples of
each subject is divided into two subsets: 5 samples for training and
1 sample for testing. This procedure has been implemented 6 times
to cover all training and testing subsets. Then, the obtained results
have been averaged and the recognition performance has been col-
lected. This method often utilizes for the database that involves few
data samples. In this paper, the EER value has been benchmarked to
1.33% by using the cross-validation method. It can be noticed that
this EER percentage is still low and this again approves the efficiency
of our contributions.

In summary, the advantages of the novel RPNN classifier are as
follows:
1. It contains supported information for each subject.
2. It has attained the best verification accuracy of 0% by employing
only four fingers. The performance comparisons with publications
including the state-of-the-art are given in Table 2.
3. It can be employed with other biometrics which provide multiple
inputs. For instance, the iris print images that acquired under two
sources of lights: the Near-InfraRed (NIR) and the visible light [35].

In this case for each iris print the two inputs of multi-spectral images
can be applied to the RPNN.

6 CONCLUSIONS

This paper has presented a powerful FT verification system based on
an effective feature extraction known as the SPC and a novel neural
network termed the RPNN. The SPC concentrates on collecting the
surrounded patterns around the main FT characteristics, as the best
of our knowledge no publication has investigated this matter. This
method can efficiently analyse the FT features acquired under two
determined lights. The first spectral was for the wavelength of BLU
light and the second spectral was for the normal WHT light. Various
FT features can be obtained by capturing the finger images under dif-
ferent lighting spectra. Moreover, the RPNN approach was proposed
to use the image features of the two spectral lightings by designing
a feedback from the output layer to the hidden layer and efficiently
managing the trained weights between the main weights and the sup-
ported weights. So, it has attractive and powerful architecture. The
RPNN has confirmed its capability, flexibility and superiority over
the PNN.

It is evident that the SPC method has achieved the best EER values
comparing with other feature extraction methods. Furthermore, by
applying the RPNN approach to the SPC the EER value has been
reduced to 0% and this is the best recorded value in terms of personal
verification based on the FT characteristic.
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