2,299 research outputs found

    Computational Spectroscopy and Reaction Dynamics

    Get PDF
    Physico- and bio-chemical processes on the femto- to picosecond time scale are ideally suited to be investigated with all-atom simulations. They include, amongst others, vibrational relaxation, ligand migration in sterically demanding environments (proteins, ices), or vibrational spectra. By comparing with experimental data, the results can be used to obtain an understanding of the mechanisms underlying the observations. Furthermore, most of these processes are sensitive to the intermolecular interactions. Therefore, detailed refinement of such interaction potentials is possible

    A Survey for Infall Motions toward Starless Cores. II. CS(21)CS (2-1) and N2H+(10)N_2H^+ (1-0) Mapping Observations

    Get PDF
    We present the results of an extensive mapping survey of 53 `starless' cores in the optically thick line of CS 2-1 and the optically thin lines of N2H+ 1-0 and C18O 1-0. The purpose of this survey was to search for signatures of extended inward motions. This study finds 10 `strong' and 9 `probable' infall candidates, based on δVCS\delta V_{CS} analysis and on the spectral shapes of CS lines. From our analysis of the blue-skewed CS spectra and the δVCS\delta V_{CS} parameter, we find typical infall radii of 0.06-0.14 pc. Also, using a simple two layer radiative transfer model to fit the profiles, we derive one-dimensional infall speeds, half of whose values lie in the range of 0.05-0.09 km s1^{-1}. These values are similar to those found in L1544 by Tafalla et al., and this result confirms that infall speeds in starless cores are generally faster than expected from ambipolar diffusion in a strongly sub-critical core. In addition, the observed infall regions are too extended to be consistent with the `inside-out' collapse model applied to a very low-mass star. In the largest cores, the spatial extent of the CS spectra with infall asymmetry is larger than the extent of the N2H+\rm N_2H^+ core by a factor of 2-3. All these results suggest that extended inward motions are a common feature in starless cores, and that they could represent a necessary stage in the condensation of a star-forming dense core.Comment: Two tex files for manuscript and tables, and 38 figures. To appear in ApJ

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore