13 research outputs found

    Two-dimensional X-ray diffraction as a tool for the rapid, non-destructive detection of low calcite quantities in aragonitic corals

    Get PDF
    Paleoclimate reconstructions based on reef corals require precise detection of diagenetic alteration. Secondary calcite can significantly affect paleotemperature reconstructions at very low amounts of ~1%. X-ray powder diffraction is routinely used to detect diagenetic calcite in aragonitic corals. This procedure has its limitations as single powder samples might not represent the entire coral heterogeneity. A conventional and a 2-D X-ray diffractometer were calibrated with gravimetric powder standards of high and low magnesium calcite (0.3% to 25% calcite). Calcite contents <1% can be recognized with both diffractometer setups based on the peak area of the calcite [104] reflection. An advantage of 2-D-XRD over convenient 1-D-XRD methods is the nondestructive and rapid detection of calcite with relatively high spatial resolution directly on coral slabs. The calcite detection performance of the 2-D-XRD setup was tested on thin sections from fossil Porites sp. samples that, based on powder XRD measurements, showed <1% calcite. Quantification of calcite contents for these thin sections based on 2-D-XRD and digital image analysis showed very similar results. This enables spot measurements with diameters of ∼4 mm, as well as systematic line scans along potential tracks previous to geochemical proxy sampling. In this way, areas affected by diagenetic calcite can be avoided and alternative sampling tracks can be defined. Alternatively, individual sampling positions that show dubious proxy results can later be checked for the presence of calcite. The presented calibration and quantification method can be transferred to any 2-D X-ray diffractometer

    Chloroplast HCF101 is a scaffold protein for [4Fe-4S] cluster assembly

    Get PDF
    Oxygen-evolving chloroplasts possess their own iron-sulfur cluster assembly proteins including members of the SUF (sulfur mobilization) and the NFU family. Recently, the chloroplast protein HCF101 (high chlorophyll fluorescence 101) has been shown to be essential for the accumulation of the membrane complex Photosystem I and the soluble ferredoxin-thioredoxin reductases, both containing [4Fe-4S] clusters. The protein belongs to the FSC-NTPase ([4Fe-4S]-cluster-containing P-loop NTPase) superfamily, several members of which play a crucial role in Fe/S cluster biosynthesis. Although the C-terminal ISC-binding site, conserved in other members of the FSC-NTPase family, is not present in chloroplast HCF101 homologues using Mössbauer and EPR spectroscopy, we provide evidence that HCF101 binds a [4Fe-4S] cluster. 55Fe incorporation studies of mitochondrially targeted HCF101 in Saccharomyces cerevisiae confirmed the assembly of an Fe/S cluster in HCF101 in an Nfs1-dependent manner. Site-directed mutagenesis identified three HCF101-specific cysteine residues required for assembly and/or stability of the cluster. We further demonstrate that the reconstituted cluster is transiently bound and can be transferred from HCF101 to a [4Fe-4S] apoprotein. Together, our findings suggest that HCF101 may serve as a chloroplast scaffold protein that specifically assembles [4Fe-4S] clusters and transfers them to the chloroplast membrane and soluble target proteins

    NOD-like receptor signaling in cholesteatoma

    No full text
    Background.\textit {Background.} Cholesteatoma is a destructive process of the middle ear resulting in erosion of the surrounding bony structures with consequent hearing loss, vestibular dysfunction, facial paralysis, or intracranial complications. The etiopathogenesis of cholesteatoma is controversial but is associated with recurrent ear infections. The role of intracellular innate immune receptors, the NOD-like receptors, and their associated signaling networks was investigated in cholesteatoma, since mutations in NOD-like receptor-related genes have been implicated in other chronic inflammatory disorders. Results.\textit {Results.} The expression of NOD2 mRNA and protein was significantly induced in cholesteatoma compared to the external auditory canal skin, mainly located in the epithelial layer of cholesteatoma. Microarray analysis showed significant upregulation for NOD2, not for NOD1, TLR2, or TLR4 in cholesteatoma. Moreover, regulation of genes in an interaction network of the NOD-adaptor molecule RIPK2 was detected.In addition to NOD2, NLRC4, and PYCARD, the downstream molecules IRAK1 and antiapoptotic regulator CFLAR showed significant upregulation, whereas SMAD3, a proapoptotic inducer, was significantly downregulated. Finally, altered regulation of inflammatory target genes of NOD signaling was detected. Conclusions.\textit {Conclusions.} These results indicate that the interaction of innate immune signaling mediated by NLRs and their downstream target molecules is involved in the etiopathogenesis and growth of cholesteatoma

    Human skin dendritic cell fate is differentially regulated by the monocyte identity factor Kruppel-like factor 4 during steady state and inflammation.

    Get PDF
    BACKGROUND Langerhans cell (LC) networks play key roles in immunity and tolerance at body surfaces. LCs are established prenatally and can be replenished from blood monocytes. Unlike skin-resident dermal DCs (dDCs)/interstitial-type DCs and inflammatory dendritic epidermal cells appearing in dermatitis/eczema lesions, LCs lack key monocyte-affiliated markers. Inversely, LCs express various epithelial genes critical for their long-term peripheral tissue residency. OBJECTIVE Dendritic cells (DCs) are functionally involved in inflammatory diseases; however, the mechanisms remained poorly understood. METHODS In vitro differentiation models of human DCs, gene profiling, gene transduction, and immunohistology were used to identify molecules involved in DC subset specification. RESULTS Here we identified the monocyte/macrophage lineage identity transcription factor Kruppel-like factor 4 (KLF4) to be inhibited during LC differentiation from human blood monocytes. Conversely, KLF4 is maintained or induced during dermal DC and monocyte-derived dendritic cell/inflammatory dendritic epidermal cell differentiation. We showed that in monocytic cells KLF4 has to be repressed to allow their differentiation into LCs. Moreover, respective KLF4 levels in DC subsets positively correlate with proinflammatory characteristics. We identified epithelial Notch signaling to repress KLF4 in monocytes undergoing LC commitment. Loss of KLF4 in monocytes transcriptionally derepresses Runt-related transcription factor 3 in response to TGF-β1, thereby allowing LC differentiation marked by a low cytokine expression profile. CONCLUSION Monocyte differentiation into LCs depends on activation of Notch signaling and the concomitant loss of KLF4
    corecore