32 research outputs found

    The association of the Activities of Daily Living and the outcome of old intensive care patients suffering from COVID-19

    Get PDF
    Open Access funding enabled and organized by Projekt DEAL. This study was endorsed by the ESICM. Free support for running the electronic database and was granted from the dep. of Epidemiology, University of Aarhus, Denmark. Bruno et al. Annals of Intensive Care (2022) 12:26 Page 10 of 11 The support of the study in France by a grant from Fondation Assistance Publique-Hôpitaux de Paris pour la recherche is greatly appreciated. In Norway, the study was supported by a grant from the Health Region West. In addition, the study was supported by a grant from the European Open Science Cloud (EOSC). EOSCsecretariat.eu has received funding from the European Union’s Horizon Programme call H2020-INFRAEOSC-05-2018-2019, grant agreement number 831644. This work was supported by the Collaborative Research Center SFB 1116 (German Research Foundation, DFG) and by the Forschungskommission of the Medical Faculty of the Heinrich-Heine-University Düsseldorf and No. 2020–21 to RRB for a Clinician Scientist Track. No (industry) sponsorship has been received for this investigator-initiated study.PURPOSE: Critically ill old intensive care unit (ICU) patients suffering from Sars-CoV-2 disease (COVID-19) are at increased risk for adverse outcomes. This post hoc analysis investigates the association of the Activities of Daily Living (ADL) with the outcome in this vulnerable patient group. METHODS: The COVIP study is a prospective international observational study that recruited ICU patients ≥ 70 years admitted with COVID-19 (NCT04321265). Several parameters including ADL (ADL; 0 = disability, 6 = no disability), Clinical Frailty Scale (CFS), SOFA score, intensive care treatment, ICU- and 3-month survival were recorded. A mixed-effects Weibull proportional hazard regression analyses for 3-month mortality adjusted for multiple confounders. RESULTS: This pre-specified analysis included 2359 patients with a documented ADL and CFS. Most patients evidenced independence in their daily living before hospital admission (80% with ADL = 6). Patients with no frailty and no disability showed the lowest, patients with frailty (CFS ≥ 5) and disability (ADL < 6) the highest 3-month mortality (52 vs. 78%, p < 0.001). ADL was independently associated with 3-month mortality (ADL as a continuous variable: aHR 0.88 (95% CI 0.82-0.94, p < 0.001). Being "disable" resulted in a significant increased risk for 3-month mortality (aHR 1.53 (95% CI 1.19-1.97, p 0.001) even after adjustment for multiple confounders. CONCLUSION: Baseline Activities of Daily Living (ADL) on admission provides additional information for outcome prediction, although most critically ill old intensive care patients suffering from COVID-19 had no restriction in their ADL prior to ICU admission. Combining frailty and disability identifies a subgroup with particularly high mortality. TRIAL REGISTRATION NUMBER: NCT04321265.publishersversionpublishe

    Lactate is associated with mortality in very old intensive care patients suffering from COVID-19: results from an international observational study of 2860 patients.

    Get PDF
    PURPOSE Lactate is an established prognosticator in critical care. However, there still is insufficient evidence about its role in predicting outcome in COVID-19. This is of particular concern in older patients who have been mostly affected during the initial surge in 2020. METHODS This prospective international observation study (The COVIP study) recruited patients aged 70 years or older (ClinicalTrials.gov ID: NCT04321265) admitted to an intensive care unit (ICU) with COVID-19 disease from March 2020 to February 2021. In addition to serial lactate values (arterial blood gas analysis), we recorded several parameters, including SOFA score, ICU procedures, limitation of care, ICU- and 3-month mortality. A lactate concentration ≥ 2.0 mmol/L on the day of ICU admission (baseline) was defined as abnormal. The primary outcome was ICU-mortality. The secondary outcomes 30-day and 3-month mortality. RESULTS In total, data from 2860 patients were analyzed. In most patients (68%), serum lactate was lower than 2 mmol/L. Elevated baseline serum lactate was associated with significantly higher ICU- and 3-month mortality (53% vs. 43%, and 71% vs. 57%, respectively, p < 0.001). In the multivariable analysis, the maximum lactate concentration on day 1 was independently associated with ICU mortality (aOR 1.06 95% CI 1.02-1.11; p = 0.007), 30-day mortality (aOR 1.07 95% CI 1.02-1.13; p = 0.005) and 3-month mortality (aOR 1.15 95% CI 1.08-1.24; p < 0.001) after adjustment for age, gender, SOFA score, and frailty. In 826 patients with baseline lactate ≥ 2 mmol/L sufficient data to calculate the difference between maximal levels on days 1 and 2 (∆ serum lactate) were available. A decreasing lactate concentration over time was inversely associated with ICU mortality after multivariate adjustment for SOFA score, age, Clinical Frailty Scale, and gender (aOR 0.60 95% CI 0.42-0.85; p = 0.004). CONCLUSION In critically ill old intensive care patients suffering from COVID-19, lactate and its kinetics are valuable tools for outcome prediction. TRIAL REGISTRATION NUMBER NCT04321265

    COVID-19 increases the risk for the onset of atrial fibrillation in hospitalized patients

    No full text
    Abstract COVID-19 is associated with significant extrapulmonary symptoms. Myocardial involvement has been described for infections with SARS-CoV-2 which may lead to an increase in morbidity and mortality. The objective of our study was to investigate the association of COVID-19 and atrial fibrillation (AF) or atrial flutter (AFl) in hospitalized patients. This retrospective study used electronic medical records to detect patients with COVID-19 and their comorbidities within the Mass General Brigham hospital system. All patients ≥ 18 years who were hospitalized and received a PCR test for SARS-CoV-2 were screened for inclusion as well as patients from a pre-pandemic cohort. We matched on common risk factors for AF and then used multivariable logistic regression to estimate the odds for AF or AFl. Of 78,725 patients eligible for analysis, 11,004 COVID-19 negative patients were matched to 3,090 COVID-19 positive patients and 5005 pre-pandemic patients were matched to 2283 COVID-19 positive patients. After adjusting for demographics and comorbidities, COVID-19 positive patients had 1.19 times the odds (95% CI 1.00, 1.41) of developing AF compared to COVID-19 negative patients and 1.57 times the odds (95% CI 1.23, 2.00) of developing AF compared to pre-pandemic patients. Our study demonstrated an increased risk for AF, directing the attention for improved screening and treatment regimens for the sequelae of COVID-19. While COVID-19 continues to affect many people around the world, AF may be a significant cause for morbidity and mortality. Adequate detection and treatment of AF is essential to reduce the burden of disease

    Sepsis-induced acute kidney injury by standardized colon ascendens stent peritonitis in rats - a simple, reproducible animal model

    Get PDF
    Background Up to 50% of septic patients develop acute kidney injury (AKI). The pathomechanism of septic AKI is poorly understood. Therefore, we established an innovative rodent model to characterize sepsis-induced AKI by standardized colon ascendens stent peritonitis (sCASP). The model has a standardized focus of infection, an intensive care set up with monitoring of haemodynamics and oxygenation resulting in predictable impairment of renal function, AKI parameters as well as histopathology scoring. Methods Anaesthetized rats underwent the sCASP procedure, whereas sham animals were sham operated and control animals were just monitored invasively. Haemodynamic variables and blood gases were continuously measured. After 24 h, animals were reanesthetized; cardiac output (CO), inulin and PAH clearances were measured and later on kidneys were harvested; and creatinine, urea, cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) were analysed. Additional sCASP-treated animals were investigated after 3 and 9 days. Results All sCASP-treated animals survived, whilst ubiquitous peritonitis and significantly deteriorated clinical and macrohaemodynamic sepsis signs after 24 h (MAP, CO, heart rate) were obvious. Blood analyses showed increased lactate and IL-6 levels as well as leucopenia. Urine output, inulin and PAH clearance were significantly decreased in sCASP compared to sham and control. Additionally, significant increase in cystatin C and NGAL was detected. Standard parameters like serum creatinine and urea were elevated and sCASP-induced sepsis increased significantly in a time-dependent manner. The renal histopathological score of sCASP-treated animals deteriorated after 3 and 9 days. Conclusions The presented sCASP method is a standardized, reliable and reproducible method to induce septic AKI. The intensive care set up, continuous macrohaemodynamic and gas exchange monitoring, low mortality rate as well as the opportunity of detailed analyses of kidney function and impairments are advantages of this setup. Thus, our described method may serve as a new standard for experimental investigations of septic AKI

    Inhalative as well as Intravenous Administration of H2S Provides Neuroprotection after Ischemia and Reperfusion Injury in the Rats&rsquo; Retina

    No full text
    Background: Neuronal ischemia-reperfusion injury (IRI), such as it can occur in glaucoma or strokes, is associated with neuronal cell death and irreversible loss of function of the affected tissue. Hydrogen sulfide (H2S) is considered a potentially neuroprotective substance, but the most effective route of application and the underlying mechanism remain to be determined. Methods: Ischemia-reperfusion injury was induced in rats by a temporary increase in intraocular pressure (1 h). H2S was then applied by inhalation (80 ppm at 0, 1.5, and 3 h after reperfusion) or by intravenous administration of the slow-releasing H2S donor GYY 4137. After 24 h, the retinas were harvested for Western blotting, qPCR, and immunohistochemical staining. Retinal ganglion cell survival was evaluated 7 days after ischemia. Results: Both inhalative and intravenously delivered H2S reduced retinal ganglion cell death with a better result from inhalative application. H2S inhalation for 1.5 h, as well as GYY 4137 treatment, increased p38 phosphorylation. Both forms of application enhanced the extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and inhalation showed a significant increase at all three time points. H2S treatment also reduced apoptotic and inflammatory markers, such as caspase-3, intracellular adhesion molecule 1 (ICAM-1), vascular endothelial growth factor (VEGF), and inducible nitric oxide synthase (iNOS). The protective effect of H2S was partly abolished by the ERK1/2 inhibitor PD98059. Inhalative H2S also reduced the heat shock response including heme oxygenase (HO-1) and heat shock protein 70 (HSP-70) and the expression of radical scavengers such as superoxide dismutases (SOD1, SOD2) and catalase. Conclusion: Hydrogen sulfide acts, at least in part, via the mitogen-activated protein kinase (MAPK) ERK1/2 to reduce apoptosis and inflammation. Both inhalative H2S and intravenous GYY 4137 administrations can improve neuronal cell survival

    Inconsistent Methodology as a Barrier to Meaningful Research Outputs From Studies of Atrial Fibrillation After Cardiac Surgery

    No full text
    Atrial fibrillation after cardiac surgery (AFACS) is an important postoperative complication. There is significant research interest in this field but also relevant heterogeneity in reported AFACS definitions and approaches used for its identification. Few data exist on the extent of this variation in clinical studies. We reviewed the literature since 2001 and included manuscripts reporting outcomes of AFACS in adults. We excluded smaller studies and studies where patient did not undergo a sternotomy. The documented protocol in each manuscript was analyzed according to six different categories to determine how AFACS was defined, which techniques were used to identify it and inclusion / exclusion criteria. We also noted when a category was not described in the documented protocol. We identified 302 studies, of which 92 were included. 62% of studies were randomised controlled trials. There was significant heterogeneity in the manuscripts, including the exclusion of patients with AF pre-surgery, the definition and duration of AF needed to meet the primary endpoint, the type of screening approach ( continuous, episodic or opportunistic), the duration of monitoring during the study period in days, the diagnosis with pre-defined ECG criteria, and the requirement for independent confirmation by study investigators. Furthermore, the definitions of these criteria were also frequently not described. Consistent reporting standards for AFACS research are needed to advance scientific progress in the field. We propose pragmatic standards for trial design and reporting standards. These include adequate sample size estimation, clear definition of the AFACS endpoints and a protocol for AFACS detection

    Activation of Myenteric Glia during Acute Inflammation In Vitro and In Vivo

    No full text
    Background Enteric glial cells (EGCs) are the main constituent of the enteric nervous system and share similarities with astrocytes from the central nervous system including their reactivity to an inflammatory microenvironment. Previous studies on EGC pathophysiology have specifically focused on mucosal glia activation and its contribution to mucosal inflammatory processes observed in the gut of inflammatory bowel disease (IBD) patients. In contrast knowledge is scarce on intestinal inflammation not locally restricted to the mucosa but systemically affecting the intestine and its effect on the overall EGC network. Methods and Results In this study, we analyzed the biological effects of a systemic LPS-induced hyperinflammatory insult on overall EGCs in a rat model in vivo, mimicking the clinical situation of systemic inflammation response syndrome (SIRS). Tissues from small and large intestine were removed 4 hours after systemic LPS-injection and analyzed on transcript and protein level. Laser capture microdissection was performed to study plexus-specific gene expression alterations. Upon systemic LPS-injection in vivo we observed a rapid and dramatic activation of Glial Fibrillary Acidic Protein (GFAP)-expressing glia on mRNA level, locally restricted to the myenteric plexus. To study the specific role of the GFAP subpopulation, we established flow cytometry-purified primary glial cell cultures from GFAP promotor-driven EGFP reporter mice. After LPS stimulation, we analyzed cytokine secretion and global gene expression profiles, which were finally implemented in a bioinformatic comparative transcriptome analysis. Enriched GFAP+ glial cells cultured as gliospheres secreted increased levels of prominent inflammatory cytokines upon LPS stimulation. Additionally, a shift in myenteric glial gene expression profile was induced that predominantly affected genes associated with immune response. Conclusion and Significance Our findings identify the myenteric GFAP-expressing glial subpopulation as particularly susceptible and responsive to acute systemic inflammation of the gut wall and complement knowledge on glial involvement in mucosal inflammation of the intestine

    Determination of selective antegrade perfusion flow rate in aortic arch surgery to restore baseline cerebral near-infrared spectroscopy values: a single centre observational study.

    No full text
    OBJECTIVE Neuroprotection during aortic arch surgery involves selective antegrade cerebral perfusion. The parameters of cerebral perfusion, e.g. flow rate, are inconsistent across centers and are subject of debate. The aim of this study was to determine the cerebral perfusion flow rate during hypothermic circulatory arrest required to meet preoperative awake baseline regional cerebral oxygen saturation (rSO2). METHODS Patients scheduled for aortic arch surgery with hypothermic circulatory arrest were enrolled in this prospective observational study. After initiation of hypothermic circulatory arrest, bilateral selective antegrade cerebral perfusion was established and cerebral flow rate was continuously increased. The primary endpoint was the difference of cerebral saturation from baseline during cerebral perfusion flow rates of 6 ml/kg/min, 8 ml/kg/min, and 10 ml/kg/min. RESULTS A total of 40 patients were included. During antegrade cerebral perfusion rSO2 was significantly lower than the baseline at 6ml/kg/min (-7.3, 95%-CI: -1.7,-12.9; p=0.0015). In contrast flow rates of 8 and 10 ml/kg/min resulted in rSO2 that did not significantly differ from the baseline (-2; 95%-CI: -4.3,8.3; p>0.99 and 1.8; (95%-CI: -8.5%, 4.8%; p>0.99). Cerebral saturation was significantly more likely to meet baseline values during selective antegrade cerebral perfusion with 8ml/kg/min than at 6ml/kg/min (44.1%; 95%-CI: 27.4%,60.8% vs 11.8%; 95% CI: 0.9%,22.6%; p = 0.0001). CONCLUSION At 8 ml/kg/min cerebral flow rate during selective antegrade cerebral perfusion regional cerebral oximetry baseline values are significantly more likely to be achieved than at 6 ml/kg/min. Further increasing the cerebral flow rate to 10 ml/kg/min does not significantly improve rSO2. CLINICALTRIALS.GOV IDENTIFIER NCT03484104
    corecore