198 research outputs found

    Effect of heat stress on acid-base balance in Polish Merino sheep

    Get PDF
    Effect of heat stress on changes in acid-base balance, physiological parameters and cortisol level were evaluated in Polish Merino sheep. Fifteen sheep were exposed to high temperature conditions (30 °C) in order to induce heat stress. All environmental parameters such as temperature, humidity and air movement were monitored. A decrease of partial pressure of CO2 (pCO2) in blood and concentration of total CO2 (tCO2) and an increase of pO2 were observed. The cortisol level also significantly increased. In the next stage of the experiment the soothing effect of air movement was examined. An increased air movement led to reduction of thermal stress. An increase in pCO2 and decrease in cortisol level were observed. The study showed that heat stress leads to changes in acid base balance and cortisol secretion. Air movement has a soothing effect on heat stress in Polish Merino sheep

    Design and analysis of fractional factorial experiments from the viewpoint of computational algebraic statistics

    Full text link
    We give an expository review of applications of computational algebraic statistics to design and analysis of fractional factorial experiments based on our recent works. For the purpose of design, the techniques of Gr\"obner bases and indicator functions allow us to treat fractional factorial designs without distinction between regular designs and non-regular designs. For the purpose of analysis of data from fractional factorial designs, the techniques of Markov bases allow us to handle discrete observations. Thus the approach of computational algebraic statistics greatly enlarges the scope of fractional factorial designs.Comment: 16 page

    V-Proportion: a method based on the Voronoi diagram to study spatial relations in neuronal mosaics of the retina

    Get PDF
    The visual system plays a predominant role in the human perception. Although all components of the eye are important to perceive visual information, the retina is a fundamental part of the visual system. In this work we study the spatial relations between neuronal mosaics in the retina. These relations have shown its importance to investigate possible constraints or connectivities between different spatially colocalized populations of neurons, and to explain how visual information spreads along the layers before being sent to the brain. We introduce the V-Proportion, a method based on the Voronoi diagram to study possible spatial interactions between two neuronal mosaics. Results in simulations as well as in real data demonstrate the effectiveness of this method to detect spatial relations between neurons in different layers

    One-Year Water-Stable and Porous Bi(III) Halide Semiconductor with Broad-Spectrum Antibacterial Performance

    Get PDF
    Hybrid metal halide semiconductors are a unique family of materials with immense potential for numerous applications. For this to materialize, environmental stability and toxicity deficiencies must be simultaneously addressed. We report here a porous, visible light semiconductor, namely, (DHS)Bi2I8 (DHS = [2.2.2] cryptand), which consists of nontoxic, earth-abundant elements, and is water-stable for more than a year. Gas- and vapor-sorption studies revealed that it can selectively and reversibly adsorb H2O and D2O at room temperature (RT) while remaining impervious to N2 and CO2. Solid-state NMR measurements and density functional theory (DFT) calculations verified the incorporation of H2O and D2O in the molecular cages, validating the porous nature. In addition to porosity, the material exhibits broad band-edge light emission centered at 600 nm with a full width at half-maximum (fwhm) of 99 nm, which is maintained after 6 months of immersion in H2O. Moreover, (DHS)Bi2I8 exhibits bacteriocidal action against three Gram-positive and three Gram-negative bacteria, including antibiotic-resistant strains. This performance, coupled with the recorded water stability and porous nature, renders it suitable for a plethora of applications, from solid-state batteries to water purification and disinfection

    Laser spectroscopy for breath analysis : towards clinical implementation

    Get PDF
    Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe

    Preservation of microvascular barrier function requires CD31 receptor-induced metabolic reprogramming

    Get PDF
    Endothelial barrier (EB) breaching is a frequent event during inflammation, and it is followed by the rapid recovery of microvascular integrity. The molecular mechanisms of EB recovery are poorly understood. Triggering of MHC molecules by migrating T-cells is a minimal signal capable of inducing endothelial contraction and transient microvascular leakage. Using this model, we show that EB recovery requires a CD31 receptor-induced, robust glycolytic response sustaining junction re-annealing. Mechanistically, this response involves src-homology phosphatase activation leading to Akt-mediated nuclear exclusion of FoxO1 and concomitant \u3b2-catenin translocation to the nucleus, collectively leading to cMyc transcription. CD31 signals also sustain mitochondrial respiration, however this pathway does not contribute to junction remodeling. We further show that pathologic microvascular leakage in CD31-deficient mice can be corrected by enhancing the glycolytic flux via pharmacological Akt or AMPK activation, thus providing a molecular platform for the therapeutic control of EB response

    The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype

    Get PDF
    The GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common cause of familial amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTLD) and ALS–FTLD, as well as contributing to sporadic forms of these diseases. Screening of large cohorts of ALS and FTLD cohorts has identified that C9ORF72-ALS is represented throughout the clinical spectrum of ALS phenotypes, though in comparison with other genetic subtypes, C9ORF72 carriers have a higher incidence of bulbar onset disease. In contrast, C9ORF72-FTLD is predominantly associated with behavioural variant FTD, which often presents with psychosis, most commonly in the form of hallucinations and delusions. However, C9ORF72 expansions are not restricted to these clinical phenotypes. There is a higher than expected incidence of parkinsonism in ALS patients with C9ORF72 expansions, and the G4C2 repeat has also been reported in other motor phenotypes, such as primary lateral sclerosis, progressive muscular atrophy, corticobasal syndrome and Huntington-like disorders. In addition, the expansion has been identified in non-motor phenotypes including Alzheimer’s disease and Lewy body dementia. It is not currently understood what is the basis of the clinical variation seen with the G4C2 repeat expansion. One potential explanation is repeat length. Sizing of the expansion by Southern blotting has established that there is somatic heterogeneity, with different expansion lengths in different tissues, even within the brain. To date, no correlation with expansion size and clinical phenotype has been established in ALS, whilst in FTLD only repeat size in the cerebellum was found to correlate with disease duration. Somatic heterogeneity suggests there is a degree of instability within the repeat and evidence of anticipation has been reported with reducing age of onset in subsequent generations. This variability/instability in expansion length, along with its interactions with environmental and genetic modifiers, such as TMEM106B, may be the basis of the differing clinical phenotypes arising from the mutation
    • …
    corecore